

Extended Abstract:

The Next Step:
From End-User Programming to
End-User Software Engineering

 Abstract
Is it possible to bring the benefits of rigorous software
engineering methodologies to end users? End users
create software when they use spreadsheet systems,
web authoring tools and graphical languages, when
they write educational simulations, spreadsheets, and
dynamic e-business web applications. Unfortunately,
however, errors are pervasive in end-user software,
and the resulting impact is sometimes enormous. A
growing number of researchers and developers are
working on ways to make the software created by end
users more reliable. This workshop brings together
researchers who are addressing this topic with industry
representatives who are deploying end-user
programming applications, to facilitate sharing of real-
world problems and solutions.

Keywords
End-User Software Engineering, Testing, Empirical
Studies of Programming, Psychology of Programming,
Programming by Demonstration.

ACM Classification Keywords
D.2.5 Testing and Debugging; H.1.2 User/Machine
Systems—Software psychology.

Copyright is held by the author/owner(s).

CHI 2006, April 22–27, 2006, Montreal, Canada.

ACM 1-xxxxxxxxxxxxxxxxxx.

Margaret Burnett

Elec. Engr. & Computer Science

Oregon State University

Corvallis, OR 97331 USA

burnett@eecs.oregonstate.edu

Brad Myers

Human-Computer Interaction Inst.

Carnegie Mellon University

Pittsburgh, PA 15213 USA

bam@cs.cmu.edu

Mary Beth Rosson

Information Sciences & Technology

Pennsylvania State University

University State College, PA 16802

mrosson@psu.edu

Susan Wiedenbeck

Information Science & Technology

Drexel University

Philadelphia, PA 19104 USA

Susan.Wiedenbeck@cis.drexel.edu

Introduction
There has been considerable work in empowering end
users to be able to write their own programs, and as a
result, users are indeed doing so. The “programming”
systems used by these end users include spreadsheet
systems, web authoring tools, and graphical languages
for demonstrating the desired behavior of educational
simulations. Using such systems, end users create
software, in forms such as educational simulations,
spreadsheets, and dynamic e-business web
applications.

Unfortunately, however, errors are pervasive in this
software, and the resulting impact is sometimes
enormous. When the software is not dependable, there
can be serious consequences for the people whose
retirement funds, credit histories, e-business revenues,
and even health and safety rely on decisions made
based on that software. Such problems are ubiquitous
in spreadsheets [6], open resource coalitions [7] and
dynamic web applications [8]. Two recent NSF
workshops have determined that end-user software is
in need of serious attention [1].

Researchers have begun to join together into a subarea
of “end-user software engineering,” to develop and
investigate technologies aimed at this problem. We
have already demonstrated some interesting progress
in tools and techniques in this area.

Special interest group (SIG) meetings at CHI’04 and
CHI’05 have successfully brought together these
researchers with many others in the CHI community
who are concerned about the user interfaces and
reliability of software and software tools. At CHI’06, this
second Workshop on End-User Software Engineering

(WEUSE II) builds upon the interest expressed by these
participants and those who attended WEUSE I at the
ICSE’05 conference. We plan to organize follow-up
events (WEUSE III, ...) at future CHI, ICSE, and related
venues as well.

Example Technologies
There is a tremendous range of technologies that can
be brought to bear on this problem. This section
highlights a number that are being developed by the
organizers and their collaborators in the EUSES
Consortium1, and we expect to find out about others at
the workshop.

Traditional methods and tools for addressing software
development and dependability problems for
professional programmers are usually not suitable for
end-user programmers. Rather, we envision systems
that create software in collaboration with those users,
in a software development paradigm that combines
traditionally separate functions – blending specification,
design, implementation, component integration,
debugging, testing, and maintenance into tightly
integrated, highly interactive environments. These
environments employ new, incremental, feedback
devices supported by analysis and inferential reasoning
to help the user reason about the dependability of their
software as they work with it, in a manner that
respects the user's problem-solving directions to an

1 The EUSES Consortium (End Users Shaping Effective Software)
consists of researchers from Oregon State University, Carnegie
Mellon University, Drexel University, Pennsylvania State
University, University of Nebraska, and Cambridge University.
See http://eusesconsortium.org.

extent unprecedented in existing software development
environments.

The End-User Software Engineering project at Oregon
State University aims to improve the reliability of
software produced by end-user programmers in
general, and by spreadsheet users in particular. Some
results have included “What You See Is What You Test”
(WYSIWYT) integrated with fault localization and with
assertions for end-user programmers [2], and semi-
automated detection of erroneous combinations of units
in spreadsheets [3]. A recent emphasis has been on
how to interest users in end-user software engineering
devices without detrimentally interrupting their
problem-solving efforts [9].

The Natural Programming Project at Carnegie Mellon
University is investigating a variety of techniques
around the idea of applying computer-human
interaction principles to the design of programming
languages and environments. In 2004, we reported on
the “WhyLine,” a debugging tool that helped end users
find bugs in 1/8 the time, and increased programmer
productivity by about 40% [5]. Current work is looking
at more effective tools for supporting the editing and
construction of code [4] and for users’ investigations of
new SDKs.

Penn State researchers in the Informal Learning in
Software Construction project are studying real world
situations and communities that can motivate and aid
non-programmers in learning and using end-user
programming tools. Prior work characterized the
problems of public school teachers learning to build
visual simulations, and designed minimalist training
materials and reusable code to serve as scaffolding

[11]. Recent research is studying the mental models of
web software construction held by sophisticated end
users, and is using these results to develop a tool for
building simple web applications [10].

Researchers at Drexel University are studying cognitive
and social factors that may affect end users’ acceptance
of end-user programming tools and their effectiveness
in using them. Research on school teachers has
investigated strategies that teachers use in
programming [13] and has identified facilitators and
inhibitors to end-user programming in the school
setting [12]. Current research in collaboration with
researchers at Oregon State University is focusing on
the effect of culture and gender on success in end-user
programming.

Researchers in end-user software engineering are
working on a variety of other approaches as well.
Among them are new surveys of end-user
programmers in real organizations, fault detection
through statistical methods and through program
analysis, pedagogical methods to encourage a quality-
control culture for users of technology, and
motivational and attention allocation issues for end-
user programmers.

Workshop Goals
The workshop’s goals are: (1) to generally share
information and raise awareness among researchers
already in this area with researchers in the related
areas of Empirical Studies of Programming and
Psychology of Programming, and with practitioners
interested in current and future techniques that can be
embodied in tools and development processes; and (2)
to concretely match end-user software engineering

problems in industry with potential solutions drawn
from new and emerging research findings. One
outcome of the first goal, in addition to shared
knowledge, will be the groundwork for a new
collaborative effort, involving interested attendees at
the workshop, for a survey paper on the state of end-
user software engineering research. At the CHI’04 and
CHI’05 SIGs and ICSE’05 workshop, initial
categorizations of existing research and the problem
space began to emerge, and these will form as a
starting point for this workshop.

We hope to also make one or more matches resulting in
future collaborations that apply research findings to
problems that industrial participants would like to solve.

References
[1] Boehm, B. and Basili, V., “Gaining Intellectual

Control of Software Development.” Computer, 2000.
33(5): pp. 27-33.

[2] Burnett, M., Cook, C., and Rothermel, G., “End-
User Software Engineering," Communications of the
ACM, 2004. 47(9): pp. 53-58..

[3] Erwig, M. and Burnett, M. “Adding Apples and
Oranges,” Fourth International Symposium on
Practical Aspects of Declarative Languages. 2002.

[4] Ko, A.J., Aung, H.H., and Myers, B.A. “Design
Requirements for More Flexible Structured Editors
from a Study of Programmers' Text Editing,”
Extended Abstracts CHI'2005: Human Factors in
Computing Systems. Portland, OR, April 2-7, 2005.
pp. 1557-1560.

[5] Ko, A.J. and Myers, B.A. “Designing the Whyline, a
Debugging Interface for Asking Why and Why Not
Questions About Runtime Failures,” CHI'2004:
Human Factors in Computing Systems. 2004. Vienna,
Austria: pp. 151-158.

[6] Panko, R., “Finding Spreadsheet Errors: Most
Spreadsheet Models Have Design Flaws That May
Lead to Long-Term Miscalculation.” Information
Week, 1995. p. 100.

[7] Raz, O. and Shaw, M. “An Approach to Preserving
Sufficient Correctness in Open Resource Coalitions,”
10th International Workshop on Software
Specification and Design. 2000.

[8] Ricca, F. and Tonella, P. “Analysis and Testing of
Web Applications,” International Conference on
Software Engineering. 2001. pp. 25-34.

[9] Robertson, T., Prabhakararao, S., Burnett, M.,
Cook, C., Ruthruff, J., Beckwith, L., and Phalgune, A.
“Impact of Interruption Style on End-User
Debugging,” CHI 2004: Human Factors in Computing
Systems. 2004. Vienna, Austria: pp. 287-294.

[10] Rode, J. and Rosson, M.B. “Programming at
Runtime: Requirements and Paradigms for
Nonprogrammer Web Application Development,” IEEE
Symposium on Human-Centric Computing Languages
and Environments. 2003.

[11] Rosson, M.B. and Seals, C. “Teachers as
Simulation Programmers: Minimalist Learning and
Reuse,” CHI'2001: Human Factors in Computing
Systems. 2001. Seattle, WA: pp. 237-244. .

[12] Wiedenbeck, S. “Facilitators and inhibitors of end-
user development by teachers in a school
environment.” IEEE Symposia on Visual Languages
and Human-Centric Computing, 2005, pp. 215-222.

[13] Wiedenbeck, S. and Engebretson, A.
“Comprehension strategies of end-user programmers
in an event driven application.” IEEE Symposia on
Visual Languages and Human-Centric Computing,
2004, pp. 207-214.

