
End-User Programming at the University of Washington

Daniel S. Weld Pedro Domingos Raphael Hoffman Sumit Sanghai
Department of Computer Science & Engineering

University of Washington, Box 352350
Seattle, WA 98195–2350 USA

Abstract
Over the past decade our research group at the Uni-
versity of Washington has investigated a number
of techniques for improving end-user customiza-
tion and programming. Much of this work has
been reported in the AI literature, and we seek to
participate in the Second Workshop on End-User
Software Engineering in order to expand our un-
derstanding of existing work and alternative ap-
proaches.

1 Introduction
Starting with the Internet Softbots project [5], our research
group at the University of Washington has been seeking new
ways to facilitate end-user customization of their computa-
tional environment. Our work has included:

• Planning-based software agents, which synthesized and
executed small programs from formal specifications [8;
7].

• The SMARTedit and SMARTpython programming-by-
demonstration (PBD) systems, based on version-space
algebra [10; 11].

• Relational Markov Models (RMMs), a learning method
for predicting when a user may start executing a repeti-
tious sequence of actions [1].

• Dynamic Markov Logic Networks, a statistical-
relational learning engine, which improves on both
version-space algebra and RMMs [17].

• The ASSIEME script recommendation engine.

End-user software engineering is especially important
when programs are generated by demonstration with machine
learning algorithms. Errors, debugging and visualization are
important challenges for all programming environments, but
are crucial when statistical or AI techniques are involved.

In the rest of this position paper we briefly describe some
of our work and current directions.

2 Background
Mackay [13] studied the customization behavior of users of
a Unix software environment and found that people do not
take advantage of customization features, even if it made their

work more efficient. The main barrier was the difficulty in
making modifications, and people only did customize when
something broke or they had to learn a new environment. Car-
roll and Rosson [3] suggest that users are biased towards mak-
ing concrete, short-term progress. As a result, they are more
likely to stick with known procedures than invest time learn-
ing about system features. In contrast, a survey on the use of
a word processor by Page et.al. [16] showed that 92% of the
participants did perform some form of customization. How-
ever, the authors remark that most participants were heavy
users and many of the considered customizations were sim-
ple to do.

Although many people seem to be reluctant to customize
their software environment, Mackay [12] and Gantt and
Nardi [6] discovered that members of an organization tend
to share customizations. Typically, some people experiment
with the system and inform other users about useful cus-
tomizations.

From this work, we draw two conclusions, which motivate
our work:
• Users will customize more if it is easier to do so. We

hope PBD will simplify customization.
• Users are often spurred to customize, when inspired by

other users who suggest about useful customizations.
Possibly the interface, itself, could make these sugges-
tions?

3 Research at the University of Washington
Due to space constraints, we limit our discussion to two PBD
systems (one powered by version-space algebra and the other
by dynamic Markov logic networks) and a system for recom-
mending relevant Web browser customizations.

3.1 Programming by Demonstration
In 1998, we started working on machine learning approaches
to programming by demonstration (PBD). Of course, PBD
has been studied extensively [4], but most previous systems
were domain-specific. We sought a domain-independent ap-
proach suitable for deep deployment that offered the expres-
siveness of a scripting language and the ease of macro record-
ing, without its accompanying brittleness.

It is useful to think of a PBD-interface as having three com-
ponents: 1) segmentation determines when the user is execut-
ing an automatable task, 2) trace induction predicts what the



Figure 1: Composite version space for SmartEdit

user is doing from a prefix of her activity trace, and 3) facili-
tation manages user interaction to aid the user in completing
her task. The next section treats segmentation in depth, but
for our PBD work we assumed that the user would notify the
interface when trace induction was desired, via “start” and
“stop” buttons like those in a macro recorder. For the facili-
tation phase, we investigated decision-theoretic control [18],
but many issues (e.g., saving learned procedures for future
use, means for convenient invokation, etc.) remain. The ini-
tial focus of our work was on the trace induction phase.

We formalized PBD trace induction as a learning problem
as follows. A repetitive task may be solved by a program
with a loop, where each iteration solves one instance of the
task. The PBD system must infer the correct program from
a demonstration of the first few iterations. Each action (e.g.,
move, select, copy, paste, . . . ) the user performs during this
demonstration causes a change in the state of the application
(e.g., defines a mapping between editor states). Therefore,
we modeled this problem as one of inferring the function that
maps one state to the next, based on observations of the state
prior to and following each user action.

3.2 Version-Space Algebra
PBD presents a particularly challenging machine learning
problem, because users are extremely reluctant to provide
more than a few training instances. Thus the learner must
be able to generalize from a very small number of iterations.
Yet in order to be useful, a wide range of programs must
be learnable. Thus the problem combines a weak bias with
the demand for low sample complexity. Our solution, called
version-space algebra, lets the application designer combine
multiple strong biases to achieve a weaker one that is tailored
to the application, thus reducing the statistical bias for the
least increase in variance. In addition, the learning system
must be able to interact gracefully with the user: presenting
comprehensible hypotheses, and taking user feedback into
account. Version-space algebra addresses this issue as well.

Originally developed for concept learning, a version space
is the subset of a hypothesis space which is consistent with a
set of training instances [15]. If there is a partial order over
candidate hypotheses, one may represent the version space
implicitly (e.g., with boundary sets) and manage updates ef-
ficiently. Version-space algebra defines transformation op-
erators (e.g., union, join, etc.) for combining simple version

spaces into more complex ones. We also developed a proba-
balistic framework for reasoning about the likelihood of each
hypothesis in a composite version space. After constructing
a library of reusable, domain-independent, component ver-
sion spaces, we combined a set of primitive spaces to form a
bias for learning text-editing programs (Figure 1), which was
used in the SmartEdit implementation. Version-space alge-
bra affords two benefits to a PBD system: 1) the ability to
specify domain-specific details necessary to guide a learner
with a simple algebraic expression (i.e., a formula equivalent
to the structure of Figure 1), and 2) a fast learning method
which uses this expression to guide consideration of possible
programs.

3.3 PBD with Dynamic Markov Logic Networks
More recently, we have employed dynamic Markov logic net-
works (DMLNs) [17] to do PBD. DMLNs are a probabilis-
tic extension of first-order and temporal logic which consist
of weighted first-order formulas describing the temporal re-
lationships between the objects in a system. DMLNs can be
used to model and learn stochastic processes, i.e., the precon-
ditions and effects of actions, the transitions between actions
and the relationships between the hidden and observed prop-
erties of objects in the domain. In most real-world domains,
the effects of an action are uncertain and a DMLN repre-
sents this using weighted first-order rules where the higher
the weight, the more likely the effect.

The major advantage of using DMLNs for PBD is that one
can learn first-order rules that capture the preconditions and
effects of an action or transitions between them. For exam-
ple, an expert can demonstrate the task of saving emails to a
newly created folder and would like the PBD system to com-
plete it for them. Using a DMLN, one can learn that the user
was trying to save only those emails that belonged to his the-
sis based on the contents and the sender and recipients. Such
tasks cannot be easily (if at all) learned using propositonal
learners. Another advantage of DMLNs stems from its ro-
bustness to noisy training examples. It is capable of inducing
a program even if the user makes a small error during demon-
stration (it can also identify these mistakes to verify that they
were unintended.

DMLNs also allow us to combine the segmentation and
trace induction phases of PBD. For example, we have mod-
eled the desktop activity of a user simultaneously working on
several tasks (i.e., switching between them). We use a DMLN
to look for common transition patterns (both at the proposi-
tional and first-order level) between the actions to segregate
the tasks and then learn models for each task. Our DMLN
learning method is implemented and works on examples of
the form described above, but has not yet been implemented
into a full PBD system.

3.4 Sharing Browser Customizations
While a PBD system might become easier than manual
programming, program reuse is the focus of the ASSIEME
project. Motivated by Mackay’s observations [12], we seek
ways for users to share browser customizations. In many
ways our system is similar to alerting systems that advice
novice users about system functionality that might be help-
ful, except that the likelihood of the user being unaware is
even greater in our context.



Figure 2: Architecture of ASSIEME.

Specifically, ASSIEME is a recommender system [2] for
client-side Webpage customizations. ASSIEME— designed
as an extension to the Firefox browser — records event traces
of user browsing behavior. This recorded information is
transmitted to a central server, and the server computes cus-
tomization recommendations based on the similarity of mul-
tiple user models, which consist of event traces, installed
customizations, and user responses to previous recommen-
dations. Recommendations are transmitted back to the user
who may accept or reject the installation of a new customiza-
tion. We currently support client-side Webpage customiza-
tions written in JavaScript for the Greasemonkey Firefox ex-
tension.

Since the development of the client-side customization
scripts requires programming skills, our system does at this
point not yet offer the same flexibility as a PBD system. How-
ever, we believe that there are many customizations which
have been developed and made publicly available. Our sys-
tem facilitates sharing of these customizations, which often
exhibit very complex behavior, because they are written by
sophisticated programmers. Our main challenges lie in the
design of an accurate recommendation algorithm and a secure
communication protocol that respects every user’s privacy.

Our work is not the first to addess sharing of customiza-
tions. Kahler [9] developed a system that allows users to ex-
plicitly share word processor customizations with colleagues.
Unlike our approach, Kahler’s system does not automatically
track customization usage nor provides personalized recom-
mendations. Client-side customization for webpages has also
been previously proposed. Miller and Myers [14] integrated
a command shell into a web browser to enable simple forms
of automation. Today, the Greasemonkey extension to the
Firefox webbrowser enables simple installation of more than
3000 publicly available customization scripts.

4 Conclusions
We aspire to the CHI workshop on EUSE, because we stand
to learn much from the community. In particular, our work
has not yet paid sufficient attention to problems, such as in-
forming the user the nature of the program induced by the
PBD algorithm — this is a critical weakness and we believe
that visual programming languages may be a key component
of the solution. Furthermore, we hope that our background
in AI and machine learning could contribute to the workshop
discussions.

References
[1] C. R. Anderson, P. Domingos, and D. S. Weld. Rela-

tional Markov models. KDD-02, August 2002.
[2] John S. Breese, David Heckerman, and Carl Myers

Kadie. Empirical analysis of predictive algorithms for
collaborative filtering. UAI, p43–52, 1998.

[3] John M. Carroll and Mary Beth Rosson. Paradox of the
active user. Interfacing thought: cognitive aspects of
human-computer interaction. pages 80–111, MIT Press,
1987.

[4] Allen Cypher, editor. Watch what I do: Programming
by demonstration. MIT Press, 1993.

[5] O. Etzioni and D. Weld. A softbot-based interface to the
Internet. C. ACM, 37(7):72–6, 1994.

[6] Michelle Gantt and Bonnie A. Nardi. Gardeners and
gurus: patterns of cooperation among cad users. CHI-
92, p107–117, 1992.

[7] K. Golden and D. Weld. Representing sensing actions:
The middle ground revisited. KR-96, p174–185, 1996.

[8] Keith Golden, Oren Etzioni, and Dan Weld. Om-
nipotence without omniscience: Sensor management in
planning. AAAI-94, p1048–1054. 1994.

[9] Helge Kahler. More than words - collaborative tailoring
of a word processor. J. UCS, 7(8):826–847, 2001.

[10] Tessa Lau, Pedro Domingos, and Daniel S. Weld. Ver-
sion space algebra and its application to programming
by demonstration. ICML-00, p527–534, June 2000.

[11] Tessa Lau, Pedro Domingos, and Daniel S. Weld.
Learning programs from traces using version space al-
gebra. K-CAP-03, p36–43, 2003.

[12] W. E. Mackay. Patterns of sharing customizable soft-
ware. CSCW-90, p209–221, 1990.

[13] W. E. Mackay. Triggers and barriers to customizing
software. CHI-91, p153 – 160, 1991.

[14] Robert C. Miller and Brad A. Myers. Integrating a com-
mand shell into a web browser. USENIX Annual Tech-
nical Conference, p171–182, 2000.

[15] T. Mitchell. Generalization as search. Artificial Intelli-
gence, 18:203–226, 1982.

[16] Stanley R. Page, Todd J. Johnsgard, Uhl Albert, and
C. Dennis Allen. User customization of a word pro-
cessor. CHI-96, p340–346, 1996.

[17] S. Sanghai, P. Domingos, and D. Weld. Learning models
of relational stochastic processes. ECML-05, October
2005.

[18] Steven A. Wolfman, Tessa Lau, Pedro Domingos, and
Daniel S. Weld. Mixed initiative interfaces for learning
tasks: Smartedit talks back. IUI-01, p167–174, January
2001.


