
End-User Software Engineering in Natural Language

Copyright is held by the author/owner(s).

CHI 2006, April 22–28, 2006, Montréal, Québec, Canada.

ACM 1-59593-298-4/06/0004.
 Abstract

In the search for easier-to-use environments for End-Users to do software development, everybody overlooks the obvious choice – using natural language to communicate between the user and the machine. Problems of ambiguity and imprecision are usually taken to be prohibitive, but we believe that modern natural language processing techniques and Common Sense reasoning can be used to create a workable environment for the creation and modification of programs. We present Metafor, a program outliner/editor that takes natural language input and allows a user to have a dialogue with the system about program construction.

Keywords

Natural language processing, Programming, Software Engineering, Dialogue management,

ACM Classification Keywords

D.1 PROGRAMMING TECHNIQUES (E), D.2 SOFTWARE ENGINEERING (K.6.3), D.3 PROGRAMMING LANGUAGES, I.2 ARTIFICIAL INTELLIGENCE

Natural Language Interaction for Software Engineering

We explore the idea of using descriptions in a natural language like English as a representation for programs. While we cannot yet convert arbitrary English descriptions to fully specified code, we can use a reasonably expressive subset of English as a conceptualization, visualization, editing and debugging tool. Simple descriptions of program objects and their behavior are converted to scaffolding (underspecified) code fragments, that can be used as feedback for the designer, and which can later be elaborated. Roughly speaking, noun phrases can be interpreted as program objects; verbs can be functions, adjectives can be properties. A surprising amount of information about program structure can be inferred by our parser from relations implicit in the linguistic structure. We refer to this phenomenon as programmatic semantics. We present a program editor, Metafor, that dynamically converts a user's stories into program code, and in a user study, participants found it useful as a brainstorming tool.

Metafor has some interesting capabilities for refactoring programs. Different ways of describing objects in natural language can give rise to different representation and implementation decisions as embodied in the details of the code. Conventional programming requires making up-front commitments to overspecified details, and saddles the user with having to perform distributed, error-prone edits in order to change design decisions. Metafor uses the inherent "ambiguity" of natural language as an advantage, automatically performing refactoring as the system learns more about the user's intent.

[image: image1.jpg]74 Metafor Interactive Natural Language Programming (hugogmedia.mit.edu)

File

[user] (01:28:32) Pacman is a
character who loves to run
through a maze and eat dots.
[agent] (01:28:32) oOk. I
created a new agent Pacman that
is a kind of character agent. I
added the ability for Pacman to
run, which can be through a maze.
I added the ability for Pacman to
leat. A dot is something which can
be eaten.

[user] (01:28:53) Whenever
Pacman eats a dot, it disappears
and he wins a point.

[agent] (01:28:53) Ok. Now we
are going to think about Pacman
leating... When Pacman eats a dot,
the dot disappears and Pacman
wins a point. ...Now that we are
done thinking about Pacman
leating, we are going to resume
thinking about _ main .

[When Pacman is running through
the maze, if a ghost catches him,
then he loses and the game is
over.

IDEICTIC STACK: [('Pacman', ['he',
‘him', 'his', 'her', 'she', 'hers'
, 'who'l), ('character', ['it'l),
('maze', ['it']), ('dots', ['they'
e thems) (EdoE R [ERT) T (tdot
', ['it']), ('Pacman', ['he', 'him
', 'his', 'her', 'she', 'hers', 'w
ho']), ('dot', ['it']), ('point’',
[t

['_main .Pacman’,

'__main

[['_main_', 'FunctionT
def _main_():
class Pacman (character) :
def run(maze):
pass

def eat(dot):
dot.disappear ()
Pacman.win (point)

def win(point) :
pass

class dot:
def disappear():
pass

Figure 1. The Metafor programming environment. Natural language input at the lower left produces Python code at the lower right. The other two panes display system state and are not intended for the end-user.

References

Hugo Liu and Henry Lieberman (2005) Programmatic Semantics for Natural Language Interfaces. Proceedings of the ACM Conference on Human Factors in Computing Systems, CHI 2005, April 5-7, 2005, Portland, OR, USA. ACM Press.

Hugo Liu and Henry Lieberman (2005) Metafor: Visualizing Stories as Code. Proceedings of the ACM International Conference on Intelligent User Interfaces, IUI 2005, January 9-12, 2005, San Diego, CA, USA, to appear. ACM 2005.

Hugo Liu and Henry Lieberman (2004) Toward a Programmatic Semantics of Natural Language. Proceedings of VL/HCC'04: the 20th IEEE Symposium on Visual Languages and Human-Centric Computing. pp. 281-282. September 26-29, 2004, Rome. IEEE Computer Society Press.

Henry Lieberman and Hugo Liu. Feasibility Studies for Programming in Natural Language. H. Lieberman, F. Paterno, and V. Wulf (Eds.) Perspectives in End-User Development, to appear. Springer, 2006.

� CONTACT _Con-414DAEDC1 \c \s \l �Henry Lieberman�

MIT Media Lab

20 Ames St. 384A

Cambridge, MA 02139 USA

lieber@media.mit.edu

Hugo Liu

MIT Media Lab

20 Ames St.

Cambridge, MA 02139 USA

hugo@media.mit.edu

Ying Li

MIT Media Lab

20 Ames St.

Cambridge, MA 02139 USA

cyli@media.mit.edu

