

The Next Step: From End-User

Programming to End-User
Software Engineering

WEUSE II Workshop at CHI 2006
Montréal, Quebec, Canada, April 23, 2006

Hyatt Regency Hotel
9:00 am – 6:00 pm

Organized by:
Margaret Burnett, Oregon State University
Brad Myers, Carnegie Mellon University
Mary Beth Rosson, Pennsylvania State University
Susan Wiedenbeck, Drexel University

Extended Abstract:

The Next Step:
From End-User Programming to
End-User Software Engineering

 Abstract
Is it possible to bring the benefits of rigorous software
engineering methodologies to end users? End users
create software when they use spreadsheet systems,
web authoring tools and graphical languages, when
they write educational simulations, spreadsheets, and
dynamic e-business web applications. Unfortunately,
however, errors are pervasive in end-user software,
and the resulting impact is sometimes enormous. A
growing number of researchers and developers are
working on ways to make the software created by end
users more reliable. This workshop brings together
researchers who are addressing this topic with industry
representatives who are deploying end-user
programming applications, to facilitate sharing of real-
world problems and solutions.

Keywords
End-User Software Engineering, Testing, Empirical
Studies of Programming, Psychology of Programming,
Programming by Demonstration.

ACM Classification Keywords
D.2.5 Testing and Debugging; H.1.2 User/Machine
Systems—Software psychology.

Copyright is held by the author/owner(s).

CHI 2006, April 22–27, 2006, Montreal, Canada.

ACM 1-xxxxxxxxxxxxxxxxxx.

Margaret Burnett

Elec. Engr. & Computer Science

Oregon State University

Corvallis, OR 97331 USA

burnett@eecs.oregonstate.edu

Brad Myers

Human-Computer Interaction Inst.

Carnegie Mellon University

Pittsburgh, PA 15213 USA

bam@cs.cmu.edu

Mary Beth Rosson

Information Sciences & Technology

Pennsylvania State University

University State College, PA 16802

mrosson@psu.edu

Susan Wiedenbeck

Information Science & Technology

Drexel University

Philadelphia, PA 19104 USA

Susan.Wiedenbeck@cis.drexel.edu

Introduction
There has been considerable work in empowering end
users to be able to write their own programs, and as a
result, users are indeed doing so. The “programming”
systems used by these end users include spreadsheet
systems, web authoring tools, and graphical languages
for demonstrating the desired behavior of educational
simulations. Using such systems, end users create
software, in forms such as educational simulations,
spreadsheets, and dynamic e-business web
applications.

Unfortunately, however, errors are pervasive in this
software, and the resulting impact is sometimes
enormous. When the software is not dependable, there
can be serious consequences for the people whose
retirement funds, credit histories, e-business revenues,
and even health and safety rely on decisions made
based on that software. Such problems are ubiquitous
in spreadsheets [6], open resource coalitions [7] and
dynamic web applications [8]. Two recent NSF
workshops have determined that end-user software is
in need of serious attention [1].

Researchers have begun to join together into a subarea
of “end-user software engineering,” to develop and
investigate technologies aimed at this problem. We
have already demonstrated some interesting progress
in tools and techniques in this area.

Special interest group (SIG) meetings at CHI’04 and
CHI’05 have successfully brought together these
researchers with many others in the CHI community
who are concerned about the user interfaces and
reliability of software and software tools. At CHI’06, this
second Workshop on End-User Software Engineering

(WEUSE II) builds upon the interest expressed by these
participants and those who attended WEUSE I at the
ICSE’05 conference. We plan to organize follow-up
events (WEUSE III, ...) at future CHI, ICSE, and related
venues as well.

Example Technologies
There is a tremendous range of technologies that can
be brought to bear on this problem. This section
highlights a number that are being developed by the
organizers and their collaborators in the EUSES
Consortium1, and we expect to find out about others at
the workshop.

Traditional methods and tools for addressing software
development and dependability problems for
professional programmers are usually not suitable for
end-user programmers. Rather, we envision systems
that create software in collaboration with those users,
in a software development paradigm that combines
traditionally separate functions – blending specification,
design, implementation, component integration,
debugging, testing, and maintenance into tightly
integrated, highly interactive environments. These
environments employ new, incremental, feedback
devices supported by analysis and inferential reasoning
to help the user reason about the dependability of their
software as they work with it, in a manner that
respects the user's problem-solving directions to an

1 The EUSES Consortium (End Users Shaping Effective Software)
consists of researchers from Oregon State University, Carnegie
Mellon University, Drexel University, Pennsylvania State
University, University of Nebraska, and Cambridge University.
See http://eusesconsortium.org.

extent unprecedented in existing software development
environments.

The End-User Software Engineering project at Oregon
State University aims to improve the reliability of
software produced by end-user programmers in
general, and by spreadsheet users in particular. Some
results have included “What You See Is What You Test”
(WYSIWYT) integrated with fault localization and with
assertions for end-user programmers [2], and semi-
automated detection of erroneous combinations of units
in spreadsheets [3]. A recent emphasis has been on
how to interest users in end-user software engineering
devices without detrimentally interrupting their
problem-solving efforts [9].

The Natural Programming Project at Carnegie Mellon
University is investigating a variety of techniques
around the idea of applying computer-human
interaction principles to the design of programming
languages and environments. In 2004, we reported on
the “WhyLine,” a debugging tool that helped end users
find bugs in 1/8 the time, and increased programmer
productivity by about 40% [5]. Current work is looking
at more effective tools for supporting the editing and
construction of code [4] and for users’ investigations of
new SDKs.

Penn State researchers in the Informal Learning in
Software Construction project are studying real world
situations and communities that can motivate and aid
non-programmers in learning and using end-user
programming tools. Prior work characterized the
problems of public school teachers learning to build
visual simulations, and designed minimalist training
materials and reusable code to serve as scaffolding

[11]. Recent research is studying the mental models of
web software construction held by sophisticated end
users, and is using these results to develop a tool for
building simple web applications [10].

Researchers at Drexel University are studying cognitive
and social factors that may affect end users’ acceptance
of end-user programming tools and their effectiveness
in using them. Research on school teachers has
investigated strategies that teachers use in
programming [13] and has identified facilitators and
inhibitors to end-user programming in the school
setting [12]. Current research in collaboration with
researchers at Oregon State University is focusing on
the effect of culture and gender on success in end-user
programming.

Researchers in end-user software engineering are
working on a variety of other approaches as well.
Among them are new surveys of end-user
programmers in real organizations, fault detection
through statistical methods and through program
analysis, pedagogical methods to encourage a quality-
control culture for users of technology, and
motivational and attention allocation issues for end-
user programmers.

Workshop Goals
The workshop’s goals are: (1) to generally share
information and raise awareness among researchers
already in this area with researchers in the related
areas of Empirical Studies of Programming and
Psychology of Programming, and with practitioners
interested in current and future techniques that can be
embodied in tools and development processes; and (2)
to concretely match end-user software engineering

problems in industry with potential solutions drawn
from new and emerging research findings. One
outcome of the first goal, in addition to shared
knowledge, will be the groundwork for a new
collaborative effort, involving interested attendees at
the workshop, for a survey paper on the state of end-
user software engineering research. At the CHI’04 and
CHI’05 SIGs and ICSE’05 workshop, initial
categorizations of existing research and the problem
space began to emerge, and these will form as a
starting point for this workshop.

We hope to also make one or more matches resulting in
future collaborations that apply research findings to
problems that industrial participants would like to solve.

References
[1] Boehm, B. and Basili, V., “Gaining Intellectual

Control of Software Development.” Computer, 2000.
33(5): pp. 27-33.

[2] Burnett, M., Cook, C., and Rothermel, G., “End-
User Software Engineering," Communications of the
ACM, 2004. 47(9): pp. 53-58..

[3] Erwig, M. and Burnett, M. “Adding Apples and
Oranges,” Fourth International Symposium on
Practical Aspects of Declarative Languages. 2002.

[4] Ko, A.J., Aung, H.H., and Myers, B.A. “Design
Requirements for More Flexible Structured Editors
from a Study of Programmers' Text Editing,”
Extended Abstracts CHI'2005: Human Factors in
Computing Systems. Portland, OR, April 2-7, 2005.
pp. 1557-1560.

[5] Ko, A.J. and Myers, B.A. “Designing the Whyline, a
Debugging Interface for Asking Why and Why Not
Questions About Runtime Failures,” CHI'2004:
Human Factors in Computing Systems. 2004. Vienna,
Austria: pp. 151-158.

[6] Panko, R., “Finding Spreadsheet Errors: Most
Spreadsheet Models Have Design Flaws That May
Lead to Long-Term Miscalculation.” Information
Week, 1995. p. 100.

[7] Raz, O. and Shaw, M. “An Approach to Preserving
Sufficient Correctness in Open Resource Coalitions,”
10th International Workshop on Software
Specification and Design. 2000.

[8] Ricca, F. and Tonella, P. “Analysis and Testing of
Web Applications,” International Conference on
Software Engineering. 2001. pp. 25-34.

[9] Robertson, T., Prabhakararao, S., Burnett, M.,
Cook, C., Ruthruff, J., Beckwith, L., and Phalgune, A.
“Impact of Interruption Style on End-User
Debugging,” CHI 2004: Human Factors in Computing
Systems. 2004. Vienna, Austria: pp. 287-294.

[10] Rode, J. and Rosson, M.B. “Programming at
Runtime: Requirements and Paradigms for
Nonprogrammer Web Application Development,” IEEE
Symposium on Human-Centric Computing Languages
and Environments. 2003.

[11] Rosson, M.B. and Seals, C. “Teachers as
Simulation Programmers: Minimalist Learning and
Reuse,” CHI'2001: Human Factors in Computing
Systems. 2001. Seattle, WA: pp. 237-244. .

[12] Wiedenbeck, S. “Facilitators and inhibitors of end-
user development by teachers in a school
environment.” IEEE Symposia on Visual Languages
and Human-Centric Computing, 2005, pp. 215-222.

[13] Wiedenbeck, S. and Engebretson, A.
“Comprehension strategies of end-user programmers
in an event driven application.” IEEE Symposia on
Visual Languages and Human-Centric Computing,
2004, pp. 207-214.

The Next Step: From End-
User Programming to End-
User Software Engineering

WEUSE II Workshop at CHI 2006, Montréal, Quebec,
Canada, April 23, 2006

Hyatt Regency Hotel
9:00 am - 6:00 pm

Online Proceedings

Papers:

End-User Software Engineering in the Real World:

1. Improving the Quality of Contributed Software on the MATLAB File Exchange
Ned Gulley

2. GE Healthcare Integrated IT Solutions, Centricity
Erika Orrick

3. Adobe/Macromedia Flash
Jen deHaan

4. End-User Software Engineering for System Administrators
Allen Cypher, Eben Haber, Eser Kandogan

End-User Software Engineering Research:

5. End-User Development in Small and Medium Enterprises: Research and
Development Issues
Matthias Betz, Jan Heß, Volkmar Pipek , Markus Rohde, Volker Wulf

6. Gender in Domestic Programming: from Bricolage to Séances d’Essayage
Alan F. Blackwell

7. Games Programs Play: Obstacles to Data Reuse
Chris Scaffidi, Mary Shaw, Brad Myers

8. End User Software Engineering: Auditing the Invisible
Joshua B. Gross

9. End-User Programming Productivity Tools
Andrew J. Ko, Brad A. Myers, Michael J. Coblenz, and Jeffrey Stylos

10. Toward Sharing Reasoning to Improve Fault Localization in Spreadsheets
Joseph Lawrance, Margaret Burnett, Robin Abraham and Martin Erwig

11. End-User Software Engineering in Natural Language
Henry Lieberman, Hugo Liu, Ying Li

12. Abstractions for End Users
Michael Toomim

13. End-User Programming at the University of Washington
Daniel S. Weld, Pedro Domingos, Raphael Hoffman, Sumit Sanghai

CHI 2006 Montreal
WEUSE workshop (http://eusesconsortium.org/weuse/)
April 23, 2006

Position paper by Ned Gulley

Improving the Quality of Contributed Software on the MATLAB File Exchange

MATLAB (which is incidentally one of the languages mentioned in the Call for
Participation for this workshop) is a technical computing language that enjoys wide usage
among scientists and engineers around the world. Typically, these people are not trained
as programmers, and they almost never describe what they are doing as programming.
They would say they are simply problem-solving, and they are often under great pressure
to produce results quickly. As a result, MATLAB is often used to arrive at "quick and
dirty" solutions. This kind of usage is emblematic of end-user programming.

In order to help our user community, we at The MathWorks have created a programming
archive called the MATLAB Central File Exchange
(http://www.mathworks.com/matlabcentral/fileexchange/), where people can freely
upload and download MATLAB programs (known as M-files). After four years of
operation, there are now 4057 files in 20 top level categories available for free download.
Files are added at the rate of 100 per month, and file downloads regularly exceed 7500
per day. We have therefore succeeded at the most important part of building a community
site: drawing a crowd.

Unfortunately, many of these files are poorly written (uncommented spaghetti code) or
poorly motivated (homework problems of no general interest). We are always looking at
ways to improve the quality of the code we host on our site. But how does one best go
about this? The fundamental problem we face with this site is how to improve the overall
value of this site without falling into the following traps:

• low barriers to participation lead to a proliferation of worthless code
• high barriers to participation drive away people away and impoverish the site
• high cost of maintenance leads to too much work for us

Over the past four years, we have a generated a great deal of real-world data and hands-
on experience about how to run a code repository. In the context of how to improve the
value of the site, I plan on discussing the tradeoffs associated with

• comments for files
• numeric ratings for files (1-5, where 1 = "nominate for deletion")
• download counters
• metrics and reports pages
• author reputation ranking systems
• submission guidelines: high and low barriers
• "collaborate with me" flags
• "Pick of the Week" blog
• wiki-mediated file review team made up of community members

• removal of low quality submissions

For each case above, we have real data on what happened in response to various
experiments we have tried.

As we grow, we need to work with our users to see that the File Exchange is meeting
their needs. Do people want the File Exchange to eventually be like Boost, a vetted, high-
quality library of code? Do we want to make SourceForge our model, in which we would
provide development environments to many people? Or do we simply want to give
people a place to put heaps of code and let a consensual voting process determine what's
good? Finally, would we ever want to provide a File Exchange-in-a-Box product to those
companies who are prevented from sharing their code publicly?

My background
Originally coming from a background in aerospace engineering and aircraft control
design, I have been working as a software developer for The MathWorks since 1991.
Since 2001 I have been leading the MATLAB Central web community team. We are
continually innovating to provide our customers with a vibrant, valuable, and personally
rewarding resource for developing MATLAB-based code.

Ned Gulley
gulley@mathworks.com
January 13, 2006

Erika Orrick Page 1 of 2

Erika Orrick
User-Centered Design Engineer
GE Healthcare Integrated IT Solutions, Centricity Practice Solutions

Position Paper for the CHI 2006 Workshop on End-User Software Engineering

With the recent federal government push towards pay for performance and other
initiatives that lend themselves to eHealthcare, physician interest in electronic medical
record (EMR) systems is growing. Currently, less than 20% of ambulatory physician
clinics use any type of EMR system. One of the biggest obstacles to adoption is clinician
resistance to an interruption in their normal routine. For example, many of the physicians
currently practicing were taught to document a patient visit using a “SOAP” (Subjective,
Objective, Assessment, Plan) note. Physicians expect to document these observations in
longhand, and, more importantly, want to be able to read them back in longhand. Many
feel a computer will not be able to accommodate this. In an attempt to address this,
MedicaLogic (now part of GE Healthcare) developed a markup/programming language,
Medical Expression Language (MEL) that allows users to develop clinical content forms
that gather input using standard form elements and generate output in a number of
formats including bulleted lists and longhand.

GE Healthcare provides a number of clinical content forms to customers when they
purchase the Centricity Physician Office EMR product. The specific forms provided is
currently undergoing some revision, but, in general, all customers are provided a generic
set of forms that will be used in most practices. These forms include those for recording
vital signs, patient histories, etc. Additionally, we produce in-house and resell specialty
and condition-specific forms including dermatology and diabetes management as two
examples. Each of these forms provides a combination of point-and-click, free text entry,
and voice-activated entry for clinicians to document a patient’s condition. The
information from these clinical content forms is stored in a database, where it can be
referenced more easily than a traditional paper chart, both on an individual patient basis
and in aggregate.

Although we sell many forms for customer use, many clinics choose to build and/or
customize their own. To accommodate this, we have built an Encounter Form Editor that
allows the user to place form elements and write custom MEL functions to gather input
and generate output in exactly the way their practice prefers. Unfortunately, our tool has
not been substantially updated in several revisions. It lacks the ability for the user to
visualize the form they are working on without having to load it into the actual EMR
system. Placing and editing individual form elements is an unnecessarily complex
process that does not allow the user to see all properties of the element at once. We also
do not provide any guidance with common MEL queries that we find many clinicians’
offices use, even though we have easy access to this information on a well-used mailing
list. Debugging a MEL function often requires switching between the Editor and the
EMR program multiple times. If selected for this workshop, I will be able to bring our
Encounter Form Editor as well as several clinical content forms to demonstrate some of
these issues.

Erika Orrick Page 2 of 2

Information overload and usability on the clinical content forms is a key priority for GE
Healthcare this year both for our in-house forms and for those that are developed by our
customers and VARs. I think there is a lot to be examined in the tools and processes we
provide to them to determine how much of the poor usability of these forms is the end-
user programming tools we provide and how much is lack of usability knowledge on the
part of the user. There is a great deal to be gained in patient safety and clinician
efficiency with the use of EMR systems, but not if we cannot reliably enter the data.

Jen deHaan
Sr Technical Writer
Adobe Systems Incorporated
601 Townsend St, MB#269
San Francisco, CA 94103 USA
415.832.7443
jdehaan@adobe.com

I am a Sr. Technical Writer at Adobe, working with the Flash team
to create documentation and instructional media for our software
releases. The following outline describes my background in software
and education, and the current challenges our team faces with helping
our customers learn how to use Flash and write ActionScript.

I have a BFA in developmental art (art education) from the University of
Calgary, where I focused on both learning how to teach art to a variety
of individuals, such as children and challenged students. After university,
I attended Vancouver Film School and graduated with top honors in New Media.
The course focused on using software to create web, video, audio, 3d, and
animated content.

Before graduating from Vancouver Film School, I began writing third-party
technical books for large publishers such as Macromedia Press and Wiley,
primarily on Macromedia Flash. To date, I have authored or co-authored over
a dozen books, and contributed to and technically edited many others. I have
also written on Macromedia ColdFusion and Dreamweaver, digital video, and
Adobe Creative Suite. I consider my teaching experience and education
beneficial to writing these technical publications, and the documentation
I write today.

While living in Canada, I ran a small freelance web design and development
business specializing in designing and creating Flash content. I also ran
a local Macromedia User Group, which held meetings to discuss using
software, design, and web development.

Macromedia (now Adobe) hired me in October 2004 because of my experience
creating Flash content and writing technical books. I am currently the lead
writer for ActionScript content, which means that I design, develop, write,
technically review, and oversee the completion of large sets of documentation.
I continually provide technical feedback on other sections of Flash and
ActionScript documentation, to improve both the technical accuracy and
usability of our documentation for our target audiences.

In addition to documentation, I also create sample applications for Flash,
help moderate the LiveDocs web site that lets users comment on documentation
(http://livedocs.macromedia.com), participate with beta software testing, run
a web log (http://weblogs.macromedia.com/dehaan), and write articles for the
Macromedia/Adobe web site (http://www.macromedia.com/devnet). All of these
activities lead to regular customer interaction, which allows me to gather
feedback about how we can improve documentation, what resources users need
to learn Flash, and determine what parts of the documentation or a tutorial
leads to user difficulties.

Outside of work, I continue to run my Flash forum (http://www.flash8forums.com),
where I can help users and gather more feedback about the software. One
reason I run the forum is to learn more about our users to improve the

documentation and instructional media. The forum is excellent at helping
me determine what difficulties Flash users face, the kinds of applications
they build, common questions, and figure out different ways people learn Flash.

Flash has always been difficult to learn; it has a steep learning curve,
robust programming language, and complex user interface. Users must first
figure out how to use the authoring tool, which involves a complex workflow,
the concept of a timeline, and many other features. Users also face a
programming language (ActionScript) to accomplish many tasks, which has
quirks and changes with each Flash Player update. Our documentation team must
keep on top of the many changes in the authoring tool and the sometimes
revolutionary changes in ActionScript.

In addition to this, Flash has a variety of users that range from artistic
designers to enterprise-level developers. The documentation team needs to
create instructional media for this wide audience, who might have novice to
highly developed skills in Flash. Such a wide audience means that our team
has complex decisions to make when creating and targeting our media. For
example, the documentation needs to remember that many designers are terrified
of programming, but will often need to do so to meet their goals. Similarly,
application programmers might need to use design tools. In both use cases,
readers are often wary, frightened, and insecure and we need to accommodate
their needs adequately.

Flash is a part of my daily life, and the people who use Flash are regularly
a part of both my job and my free time. My interaction with our users helps
me improve my skills and knowledge for teaching Flash to our customers
through better documentation, sample files, and tutorials. I hope that this
insight might be useful at your workshop, which sounds very interesting and
valuable to me as a documentation writer and creator of instructional media.

Regards,
Jen deHaan

Jen deHaan
Sr Technical Writer
Adobe Systems Incorporated
601 Townsend St, MB#269
San Francisco, CA 94103 USA
415.832.7443
jdehaan@adobe.com
~~

End-User Software Engineering
for System Administrators

Allen Cypher, Eben Haber, Eser Kandogan
User Experience Research Group
IBM Almaden Research Center

January 13, 2006

 Our group at IBM Almaden has been studying system administration work practices
and tools for the past three years. System administrators maintain the IT infrastructure on
which our society depends. We conducted 14 ethnographic field studies at six different sites,
both inside and outside IBM, through naturalistic observation, interviews, and surveys. In
the course of these studies we found end-user programming to be pervasive throughout
system administration work.

We observed end-user programming to be an important tool for system administrators for
1) monitoring systems and 2) automating important tasks. End-user monitoring tools are
needed due to the complex and idiosyncratic nature of the systems being managed; systems
typically comprise many components from different vendors, and off-the-shelf tools do not
provide the scope or detail needed for a given installation. For example, at a database site we
observed a locally-created set of Perl scripts that generate web pages which continually
display a custom “dashboard” of all the aspects of database performance needed by the
administrators. A more transient example was seen with a group of administrators debugging
a problem involving the interactions of a web server with a web application server and a
database. No tool existed for continually reporting the connections to the web server, so the
group of administrators worked together for about 40 minutes to create one.

End-user programming is also used to automate important tasks. System administration
tasks frequently involve complicated command-line commands and many steps, making
them amenable to automation through scripting. The vast majority of administrators we
observed used small scripts for executing common tasks. We also occasionally saw larger,
shared tools for automating tasks, such as a database site where the “crontab” file contained a
long list of common database maintenance commands, all commented out. When a
command needed to be run, the administrator would uncomment the command, and it would
then be run automatically.

End-User Software Engineering
Our studies have pointed to a critical need for Testability and Collaboration in end-user

programming. These capabilities are currently well-supported in professional software
engineering environments, but not for end-user programming.

Testability
System Administrators are responsible for the reliable operation of the computer systems

on which businesses depend worldwide, and testability of the scripts they use is critical for
ensuring reliability. One example of a deficiency in testability comes from some database
administrators we observed preparing to perform a crucial operation during a limited time
window. To get ready, they performed the same operation on a series of increasingly
complex test systems. Part of the operation involved database scripts that needed to be
customized for each test system. During our observations, an error crept in while the script
was being edited. The database, however, had no way to verify a script’s syntax or semantics

without running the script. When the script was run and the error reported, it left the
database in an unpredictable state.

Since sysadmins frequently write programs under time pressure, and need to produce
working programs quickly, an integrated testing environment that immediately and
interactively verified that a program was working would be of considerable value.

Collaboration
Although traditionally there has been some collaboration in end-user programming –

such as the sharing of spreadsheets and VBScripts – we have seen how system administrators
have needs for collaboration that far exceed current capabilities. Although sysadmins have
considerable technical knowledge, they generally lack software engineering training. Access
to collaborators could enhance their scripting abilities – and the robustness of their scripts –
through scaffolding. For example, in a web hosting service installation we observed web
administrators having to wait for several hours before they could execute their scripts for
configuring a web application server. They had to wait for the database administrators, who
were able to run the scripts that set up database tables.

We have also observed another need for collaboration: sysadmins sometimes share a
programming task – with more than one person working on the program – and this leads to
multiple versions of the program. In such a situation, a web-based environment could
facilitate sharing, uniformity, and a common understanding. Web-based deployment also is
valuable for system administration because it minimizes installation on critical systems.

Finally, beyond collaborating to develop tools, collaboration is also valuable during the
use of the tools. In one case, we observed several sysadmins working together from different
remote sites, trying to solve a system failure. We noted that miscommunication among the
sysadmins kept them from resolving the problem. Shared monitoring tools can provide a
consistent view of a system, helping to find problems more quickly.

Special Considerations for Software Engineering for System Administrators
In addressing the Testability and Collaboration needs for end-user programming by

system administrators, there are some unique considerations that EUSE researchers should
keep in mind.

First, a large amount of sysadmin scripting is done through a command line interface,
since this environment is universally available on the computers being administered, and it is
reliably present even when other parts of the software environment have failed. It is unlikely
that any EUP solution which does not support command line interaction would be acceptable
to this community.

Second, since sysadmins work with numerous heterogeneous software and hardware
components, any EUP solution must be able to integrate the monitoring and control of these
components. There is a large extant body of system management scripts, APIs, and
frameworks, and sysadmins would appreciate the ability to incorporate them into EUP
environments without much effort.

In conclusion, System Administrators are a large and important group of computer users

who have a critical need for end-user programming. Advances in testability and
collaboration could have a dramatic impact on their effectiveness. Our group at IBM has
implemented a prototype end-user programming environment that addresses collaboration
and information integration, but we have not worked on reliability and testability.

End-User Development in Small and Medium Enterprises: Research and development
Issues

Position Paper for the CHI 2006 workshop on ‘End-User Computing’

Matthias Betz, Jan Heß, Volkmar Pipek , Markus Rohde, Volker Wulf

{mathias.betz; jan.hess; volkmar.pipek; markus.rohde; volker.wulf}@uni-siegen.de
University of Siegen

Information Systems and New Media
Hoelderlinstrasse 3

D-57068 Siegen

Stefan Scheidl
stefan.scheidl@sap.com

SAP AG
Dietmar-Hopp-Allee 16

D-69190 Walldorf

Our research currently aims at the development of innovative strategies and techniques of
end-user development for the business software market and focuses on small and medium
enterprises (SMEs). The development of business software for this target group is a big
challenge. Due to the fast changes in the market, flexibility and customisation are main
requirements of such software. Most enterprises are not able to invest in individually
programmed software but adjust the existing standard software to their own needs as long as
possible. As only few options are adaptable, the level of modification is quite limited. Here,
end user development can open up new perspectives. EUD strategies shall enable end-users
(as non-professional developers) to manage their local IT-infrastructure within their
organizational and process context.

Research Question and Approach

Our research questions in this context are: How can the necessary flexibility for business
standard software be reached and how can one arrange these technologies in a way suitable to
the users. What interface concepts and architectures can help to reach this goal? Where do we
have to modify existing software engineering concepts? To answer these questions we will
explore and evaluate EUD concepts for this context. (e.g. Concepts like Programming by
Example, Incremental Programming or Model-based EUD, and software architectures for
customizing like Service Oriented Architectures) .

Our EUD approach is based on two different and complementary perspectives: the
development perspective and the appropriation perspective. On one side the development
perspective focuses on the development of technologies, interfaces and methods to provide
highly-tailorable, domain-oriented ERP software for small and medium enterprises. On the
other side the appropriation perspective targets the activities that are being actively performed
by end users in order to make sense of technology, and that usually go far beyond ‘just’
configuring technology. For the development of technology several points are interesting:

- What are ‘good’ decompositions of technology that make them flexible and
manageable?

- What roles and competencies necessary to manage different levels of technological
complexity? How can less competent users manage more complex technology?

- How can interface concepts be developed so that they can be easily specialised to
serve users from different domains?

For the appropriation perspective, users are being perceived as a ‘Virtual Community of
Technology Practice’, with support options in several directions:

- Articulation support: for the exchange of (online-/offline-) comments about the
software

- Negotiation support: for the exchange of (online-/offline-) negotiation between end-
users regarding software configuration

- Decision support: for collaborative decisions on software configuration solutions
- Observation support: with respect to practice of use (e.g., frequency and correlation of

use patterns, configuration solutions etc.)
- Demonstration support: regarding the intended visualization of individual and

collaborative use of software
- Recommendation support: establishment of a recommendation network regarding use

patterns and configuration solutions
- Simulation support: use patterns and configuration solutions shall be simulated in a

comprehensive way for end-users
- Exploration support: enhancement of the simulation by freely configurable, hypothetic

use scenarios
- Version management support: storage and visualization of histories of use patterns and

configuration solutions
- Delegation support: tasks of adaptation and configuration shall be delegated to specific

users and roles in user communities

The research project

EUDISMES is a research project within the program of “Software Engineering 2006”
promoted by the German “Federal Ministry of Education and Research” (BMBF). Research
partners are SAP AG, Buhl Data GmbH and University of Siegen. SAP is an international key
player in the area of ERP (Enterprise Resource Planning) software solutions. Buhl Data
develops business software mainly for end-user. The chair of “Information Systems and New
Media” at the University of Siegen has a long experience in the domain of End User
Development (EUD). For more than five years we are organizing workshops regarding this
issue. Soon the book “End User Development” will be released where Prof. Dr. Wulf
functioned as co-editor. In 2005 the research group got the “IBM Eclipse Awards 2005” for a
cooperative EUD concept with “Eclipse” (CHiC – Community Help in Context”).
Furthermore we collaborate with two small (Natursteinwerk Schiffer GmbH and Dachdecker-
Meisterbetrieb Vißer) and two medium (Alfred Sternjakob GmbH & Co. KG and
Strähle+Hess GmbH & Co. KG) industry partners in order to gain practice experience. Via
analysis of the existing business processes we want valuate which techniques are best to be
used. Later prototypes will be implemented. The prototypes (“Proof of Concepts”) will be
revied and evaluated. From the gained experience we hope to create an integrated concept for
EUD in SMEs. Additionally we plan to build up an EUD community to verify our concepts
externally.

http://www.sternjakob.de/Home.htm

 1

Gender in Domestic Programming:
from Bricolage to Séances d’Essayage

Alan F. Blackwell
Computer Laboratory, University of Cambridge

Alan.Blackwell@cl.cam.ac.uk

ABSTRACT
Developments in ubiquitous computing mean that domestic
appliances are increasingly programmable, providing new
opportunities for end-user control and configuration.
Unfortunately home programming, just as with end-user
programming in professional contexts, is associated with
stereotypically masculine learning styles. This is likely to
result in future inequalities surrounding domestic
technology. This paper summarises recent experimental
evidence regarding the role of self-efficacy in learning
through experimentation, demonstrates that similar gender-
linked behaviour can be found in both domestic and
professional contexts, and recommends a new approach to
promoting such experimentation among women.

INTRODUCTION
In North America and the United Kingdom, computer
programming has strong gender-specific connotations. Most
professors of computer science are male, the computing
“high culture” of hacking is overtly masculine [8], and
universities (including my own) have great difficulty
persuading female applicants to apply to study computer
disciplines.

Do these patterns have any broader consequences, beyond a
gender imbalance in the computing professions? In
previous work, I have related the cognitive demands of
computer programming, as practiced professionally, to the
practice of programming on a smaller scale in order to
control and configure domestic appliances [4]. Ubiquitous
computing technologies increasingly introduce computers
into our surroundings. In the domestic environment, these
sometimes do little more than replacing device functions
that would once have been achieved mechanically.
However, an increasing number of domestic appliances also
offer more powerful opportunities for configuration, no
longer restricted to mechanical direct manipulation, but
instead programming the appliance so that it will behave

differently in future. This paper investigates the possibility
that gender imbalance in professional computing might
extend to disempowerment of women in a domestic context
where end-users program their home appliances.

A note on gender studies
The remainder of this paper describes a variety of
behaviours that are presented as “stereotypically” male or
female. It is important to note that these descriptions are not
intended to be normative descriptions of men and women
(either the way they are, or the way they should be).
Indeed, many men act in ways that are stereotypically
female, while many women act in ways that are
stereotypically male. The motivation in describing and
analyzing stereotypical behaviours is in order to identify
resulting inequalities, and potentially act to correct them. In
statistical terms, “stereotypically female” behaviours are
more likely to be found in women, and experimental data is
collected on this basis. The results should not, however, be
applied indiscriminately to define the ability of individuals.

SOCIAL CONTEXT AND COGNITIVE STYLE
With Jennifer Rode and Eleanor Toye, I have investigated
the social context of domestic end-user programming,
finding that ordinary households own many programmable
appliances, and that although specific appliances may fall
into male or female domains of a household, both genders
engage in programming behaviour [9,10]. If there is no
gender-role obstacle to end user programming in the
domestic context, it is reasonable to ask whether the gender
imbalance in professional software engineering might result
in a “trickle-down” of imbalance in everyday contexts of
ubiquitous computing such as this domestic one. Evidence
of this possibility can be seen in recent work with
Beckwith, Kissinger et. al., which observed gender
differences in end-user programming of spreadsheets [2].
These differences could not be directly attributed to social
context (they were observed in an experimental context),
but appear to be derived from cognitive styles associated
with differing degrees of self-efficacy [1].

A previous proposal for gender-linked cognitive styles in
learning to program was made by Turkle and Papert [11].
That work drew on Papert’s philosophy of
“constructionism”, which emphasises learning by doing.
Constructionism is derived from the cognitive development
theories of Piaget, who reported that children first learn

through concrete, physical experience, and only later
develop abstract and symbolic ways of learning. This
natural progression from concrete to abstract understanding
motivated Papert’s educational programming language
Logo, and also Kay’s Smalltalk, designed as a component
of a computer for children at Xerox PARC. Kay also
believed that adults should learn this way, as in his
constructionist motivation for the graphical user interface:
“doing with icons makes symbols” [5].

What are the social implications of constructionism? The
constructionist approach to learning is described by Papert
as a kind of bricolage, a term used by anthropologist
Claude Levi-Strauss to characterise the intellectual style of
non-Western cultures. Levi-Strauss wished to emphasise
the way that these cultures build social aggregates of
experience, rather than the decontextualised theoretical
structures typical of the West. In Turkle and Papert’s work
[11], bricolage is also a constructionist style of
programming that creates “soft” and artistic arrangements
of material rather than “hard” logical hierarchies of black
boxes. They support this characterisation of adult learners
from the personal experience of female students taking
introductory programming classes at Harvard, who are
reported to learn better when they are able to build by
experimenting and adapting building-block materials.

BRICOLAGE IN THE HOME
This attitude to programming would appear highly
appropriate to the domestic context. People programming
home appliances do not wish to build theoretical constructs
(although they certainly acquire theoretical understanding
through successful performance). Indeed, home appliances
do not support the design of sophisticated abstractions.
Instead, appliances are used principally to achieve social
and cultural ends, much as recommended for female
students of programming by Turkle and Paper. Does
bricolage provide an appropriate perspective for the
introduction of end-user programmable ubiquitous
computing into the home?

One problem with use of this term is the fact that it is
already strongly associated with a particular kind of
domestic activity. In informal French (outside of
anthropology and cultural theory), “bricolage” is a synonym
for the English “DIY”, meaning the practice of amateurs,
hobbyists or enthusiasts who maintain and modify their
own houses. In France, this activity is certainly linked to
gender. I asked a French student whether a French woman
would ever engage in bricolage. She answered without
hesitation: “No”!

I do not believe that this is an unfortunate linguistic
accident. The kind of things that a male bricoleur or DIY-
enthusiast might do around the house are often associated
with hobbies rather than serious utility. Early experiments
in ubiquitous computing for the home have a similar taint.
It has been possible for over a decade to buy programmable
home control systems that link appliances together,

controlling their behaviour from programs running on a
central PC. The X10 standard for home automation is a
popular tool for such hobbyists. If one were to identify
opportunities for end-user software engineering in the
home, this would seem to be an obvious target. Indeed, I
was involved in a substantial research project aimed at end-
user programming for home automation of this kind [6].
The many similar international research efforts aimed at
developing future “smart homes” seem to be similarly
masculine in their style and objectives. If home-owners are
to be allowed to control and configure their homes via end-
user programming, this will be a DIY/bricoleur heaven!

To summarise, Turkle and Papert recommend bricolage as
an approach to programming that may be more appropriate
to females. Bricolage seems likely to become a feature of
end-user programming in the home, but might be framed in
a way that is predominantly masculine.

TINKERING AND BRICOLAGE
The aspects of male DIY hobbyist behaviour that are least
directed toward utilitarian outcomes are sometimes
described as “tinkering”. In the UK, this activity
stereotypically takes place in a garden shed, where a man
might take refuge from the social demands of the household
to fiddle with pieces of wood or dismantled engines. Classic
tropes of popular technology include the “backyard
inventor”, who, through such tinkering, achieves creative
technical innovations.

One can certainly imagine that constant experimentation
with tools, materials and components, whether woodwork,
machinery or end-user software engineering, would lead
over time to competence and even innovation. This is a
positive, craft-oriented view of tinkering as a source of skill
and expertise. It is related to Levi-Strauss’ original adoption
of the term bricolage, not to imply amateurism (as in the
modern usage), but informal traditions of learning. In the
domain of programming, Ben-Ari has in fact recommended
that this style of engagement with computers is the best
model for end-user programmers, whom he therefore
describes as bricoleurs [3].

BRICOLAGE AND GENDER
Our recent study of tinkering in a conventional end-user
software engineering domain, that of spreadsheets, found
that males were indeed more likely to engage in tinkering
[2]. Furthermore, those females who were more willing to
tinker with the spreadsheet were more likely to learn. This
willingness to tinker was associated with higher self-
efficacy in females. However, increased tinkering in males
was not always associated with improved performance in
males. In fact, the opposite was true. It seems that an
alternative connotation of the word tinkering, one
associated with aimless time-wasting, was more typical of
male behaviour in the end-user programming domain of
spreadsheets.

 3

Which of these interpretations of bricolage is likely to be
true in the end-user programming domain of domestic
appliance control? Will the smart homes of the future be of
interest mainly to male hobbyists attracted to ubiquitous
computing as the cyberspace equivalent of the garden shed?
On the basis of popular literature such as technology
magazines, one would have to conclude that the answer is
yes. This is certainly the suspicion of female members of
my own household. I believe it is true of many others.

However our study of end-user programming in existing
home appliances [9] shows that women do already engage
in programming at home, but for specific utilitarian
purposes. It is worth asking whether the learning
advantages experienced by females in our recent study of
tinkering in spreadsheet programming, and recommended
by Turkle and Papert for concrete experiences of object-
oriented languages, might provide a basis by which females
can be empowered to control and configure new pervasive
computing technologies that enter their own homes.

AN EXPERIMENT IN DOMESTIC PROGRAMMING
STYLES
In a recent (unpublished) study of domestic programming,
Jennifer Rode, Eleanor Toye and I compared male and
female approaches to the programming of a new DVD
recorder. In a previous generation of domestic technology,
“programming the VCR” was notorious as an activity that
demonstrated lack of personal control over home
technology. We wished to investigate this phenomenon in a
controlled experimental context, in order to see whether
there were any gender-linked effects of cognitive style that
might influence home-owners’ willingness to make the
“attention investment” [4] involved in a transition from
direct manipulation to appliance programming.

As in the work by Beckwith et. al [2], we saw a link
between attention investment and self-efficacy. Low self-
efficacy will result in an over-estimate of the costs involved
in a novel abstraction strategy, and an under-estimate of the
likelihood of success. Our experiment therefore compared
participants’ estimated likelihood of success in end-user
programming of the appliance with their actual success in
an experimental task. This task was designed to be as
closely representative as possible of domestic experience of
new technology. Participants were presented with a new
DVD recorder and television, made by the same
manufacturer, and purchased from the appliance department
of a local department store. We had connected the recorder
and television to power and aerial, but gave no further
instructions on their use, simply giving the participant the
appliance manuals, and asking them to program recording
of a television show. Participants were interviewed before
and after this task, in order to measure their self-efficacy.

Full results of this study will be published in due course.
For the purpose of this workshop, it appears that the general
trend with regard to self-efficacy for DVD programming is
the same as that noted in the study of spreadsheet

programming by Beckwith et. al. Of the 24 participants in
our study, the 12 women were less confident than the 12
men of their ability to complete the video programming
task successfully. After the task, the confidence of the men
increased, while the confidence of women decreased, as
also observed in the Beckwith et. al. study. These effects
were more pronounced when the task involved
programming, rather than non-programming functions of
the DVD recorder. Despite the drop in reported self-
efficacy, the actual rates of success were equal for men and
women (although more women were unsure afterwards
whether they had correctly completed the task).

With regard to the consequences for attention investment
decisions, women predicted that the task would take them
longer than men predicted. This was true, in that average
completion time was substantially longer for women. As in
the experiment by Beckwith et. al., we might expect this to
result from more periods of reflection by women. However
the estimate by women of how long they had actually spent
on the task was more than double the elapsed time (an
estimate of 20 minutes, as opposed to average elapsed time
of 9 minutes). Post-hoc estimates by men were that they
had spent only 5 minutes on the task (actual average 4). In
terms of attention investment, we would expect this biased
estimate of actual attention required to perform a
programming task to result in future avoidance of the task,
because the attention investment would appear not to be
justified. We therefore see that, in the home domain as in
the spreadsheet domain, initial differences in self-efficacy
lead to actual differences in programming competence.

EMPOWERMENT THROUGH ESSAYAGE
What skills do we wish to encourage, in order to establish
competence in both genders to configure and control
ubiquitous computing infrastructure in the domestic
environment? In terms of the attention investment theory of
abstraction use, we would like to assist all members of a
household to make the transition from direct manipulation,
to abstract specification of system behaviour. It is often the
case that abstract specifications of appliance function are
related to the functionality that can be controlled by direct
manipulation, so the required competence is a matter of
understanding direct manipulation behaviours sufficiently
well to compose and modify them. This understanding of
component behaviour is achieved informally, through a
process of active experimentation, tinkering with the direct
manipulation components, while the process of modifying
and composing those components can be understood in
terms of informal assembly or bricolage.

Based on our experimental findings, as well as the analysis
of cultural connotations of tinkering and bricolage, it seems
that these kinds of experimentation in the home are
stereotypically masculine. Women are less likely to engage
in either tinkering or bricolage with home appliances, and
hence less likely to gain the expertise necessary to become
competent end-user programmers in the home.

There are, however, other domains in which stereotypically
female activity has characteristics that lead to competence
in constructing abstractions. The conventional view of male
dressing is that men select individual items of clothing
according to immediate or functional requirements (a kind
of direct manipulation) without proper consideration to the
complete assemblage or “outfit”. Women, in contrast, are
expected to be relatively expert in the coordination of items
of clothing into an outfit or ensemble. This competence is
not innate, but is developed through processes of deliberate
experimentation, in which a woman experimentally tries on
different items of clothing that she owns, in order to design
ensemble outfits for use on later occasions. This form of
experimentation, leading to expertise and the construction
of abstract specifications from concrete elements, seems
closely related to the kind of competences that are
developed by men when they tinker with mechanical
components.

We have noted that skill derived from tinkering is highly
dependent on self-efficacy. Lack of confidence in one’s
own ability does not encourage tinkering, and hence
prevents sufficient familiarity for the move to abstract
specification. In attention investment terms, low self-
efficacy perpetuates reliance on direct manipulation. In the
ubiquitous computing smart home, reliance on direct
manipulation will be associated with lack of control,
especially as home appliances incorporate increasing
numbers of abstract specification functions [7]. Rather than
submit to this perpetuation of gender-stereotyped
competence in relation to technology, we might instead
promote positive models of experimentation and abstract
description within existing domains of female competence.
Just as “bricolage” veers between social theory and
mundane household gender roles in order to suggest a
perhaps overly masculine model of technology use, we
might recommend an alternative style of engagement based
on the “séance d’essayage”. This phrase offers a relatively
formalized recognition of the kind of female behaviour in
which items of clothing are assembled into ensemble
outfits. It encourages the kind of experimentation that leads
to improved conceptual understanding in that domain, and
it forms the basis for future competence.

The séance d’essayage is not currently associated with the
kind of masculine competencies (tinkering and bricolage)
that have been related to successful end-user programming.
But this does not mean that such an association is
impossible. Perhaps an alternative approach to software
tools, one modeled on stereotypically female competence,
would offer potential for greater balance in delivering the
benefits of ubiquitous computing.

ACKNOWLEDGMENTS
This paper draws on experimental work that was carried out
by Jennifer Rode and Eleanor Toye, and funded by the
Engineering and Physical Sciences Research Council grant

GR/R87482 ‘‘Cognitive Ergonomics for Ubiquitous
Computing.’’ It also draws on collaboration with Laura
Beckwith during and subsequent to a visit to Cambridge
that was funded by the NSF EUSES consortium. Laura’s
work involved several other EUSES members, as in [2] We
are grateful to participants in both these studies.

REFERENCES
1. Bandura, A. Self-efficacy: Toward a unifying theory of

behavioral change. Psychological Review 8, 2 (1977),
191-215.

2. Beckwith, L., Kissinger, C., Burnett, B., Wiedenbeck,
S., Lawrance, J., Blackwell, A. and Cook, C. Tinkering
and gender in end-user programmers' debugging. To
appear in Proceedings of CHI 2006.

3. Ben-Ari, M. Bricolage forever! In Proceedings of the
11th Annual Workshop of the Psychology of
Programming Interest Group, (1999), 53-57.

4. Blackwell, A.F. First steps in programming: a rationale
for attention investment models. In Proc. IEEE Human-
Centric Computing Languages and Environments
(2002), 2-10.

5. Blackwell, A.F. The reification of metaphor as a design
tool. To appear in ACM Transactions on CHI.

6. Blackwell, A.F. and Hague, R. AutoHAN: An
architecture for programming the home. In Proceedings
of the IEEE Symposia on Human-Centric Computing
Languages and Environments (2001), pp. 150-157.

7. Blackwell, A.F., Hewson, R.L. and Green, T.R.G.
Product design to support user abstractions. In E.
Hollnagel (Ed.) Handbook of Cognitive Task Design.
Lawrence Erlbaum Associates, (2003) pp. 525-545.

8. Hǻpnes, T. and Sørensen, K.H. Competition and
collaboration in male shaping of computing: A study of
a Norwegian hacker culture. In K. Grint & R. Gill (Eds),
The Gender-Technology Relation: Contemporary theory
and research. London: Taylor & Francis (1995), pp.
174-191.

9. Rode, J.A., Toye, E.F. and Blackwell, A.F. The Fuzzy
Felt Ethnography - understanding the programming
patterns of domestic appliances. Personal and
Ubiquitous Computing 8 (2004), 161-176.

10. Rode, J.A., Toye, E.F. and Blackwell, A.F. The
domestic economy: A broader unit of analysis for end
user programming. In Proceedings CHI'05 (extended
abstracts), (2005) pp. 1757-1760.

11. Turkle, S. and Papert, S. Epistemological pluralism and
the revaluation of the concrete. Journal of Mathematical
Behavior 11, 1 (1992), 3-33. Available online at
http://www.papert.org/articles/EpistemologicalPluralism
.html

Games Programs Play: Obstacles to Data Reuse
Chris Scaffidi

Institute for Software Research Intl.

School of Computer Science

Carnegie Mellon University

cscaffid+isri@cs.cmu.edu

Mary Shaw

Sloan Software Industry Center &

School of Computer Science

Carnegie Mellon University

mary.shaw@cs.cmu.edu

Brad Myers

Human-Computer Interaction Institute

School of Computer Science

Carnegie Mellon University

bam@cs.cmu.edu

ABSTRACT

Information workers often reuse data by taking it from an

existing representation, recombining it to create new data,

and storing the new data in another representation. The

sources and destinations include databases, spreadsheets,

web sites, text documents, and emails. Recombination ac-

tivities are similarly diverse and include copy/pasting, con-

catenating, visual reformatting, arithmetic/calculating, and

so forth. Yet many obstacles impede such reuse. In this

paper, we summarize the problems that users face as well as

some strategies for overcoming these problems.

Author Keywords – data, reuse, software, interoperability

ACM Classification Keywords

H.3.5. Online Information Services: Data sharing.

OBSTACLES USERS HAVE ENCOUNTERED

We have recently conducted three studies that characterize

numerous obstacles impeding effective data reuse by end

users, professional programmers, and everyone in between.

First, preliminary analysis of our contextual inquiry of three

administrative assistants and five managers at Carnegie

Mellon University reveals that much of their work involves

manually copying and pasting data among web pages,

spreadsheets, and emails. Their work is highly repetitive

and ripe for end-user programming—except that they lack

suitable tools.

Second, our finished survey of 831 computer-savvy Infor-

mation Week readers asks what software they use, followed

by the open-response question, “In what ways has this soft-

ware ‘gotten in the way’ of doing work in the past year?”

[5] Of the 527 people who list problems in response, 25%

mention obstacles related to data reuse, especially data in-

compatibility. (By comparison, only 15% mention bugs,

glitches, or other software reliability problems.)

Third, preliminary analysis of telephone interviews with six

people involved in creating Hurricane Katrina “person-

locator” sites suggests that even technically capable people

struggle to reuse data. As these sites redundantly prolifer-

ated in the weeks after Katrina, three of our respondents

helped merge sites into a single whole. Though handcrafted

scripts processed over 500,000 records, numerous problems

forced volunteers to type in another 100,000 manually.

In general, users may perform the following six steps when

reusing data, and obstacles abound at each step. (Below,

“CI” refers to our contextual inquiry, “IW” refers to our

Information Week survey, and “HK” refers to our inter-

views related to Hurricane Katrina person-locator sites.)

Step 1: Find data sources

Reusing data first requires finding it, which can prove tedi-

ous. One IW respondent has expressed unhappiness with

his organization’s “very fragmented data management envi-

ronment,” while another has complained, “Separate files in

separate formats and folders causes [sic] confusion and

need for good organizational skills.” In fact, our CI reveals

that even if users only need a single piece of data to popu-

late a spreadsheet or web form, they may struggle to find

the datum using software and instead fall back on manual

methods. For example, administrative assistants and man-

agers fill out many expense reports that require a project

code for each expense, but looking up codes is slow, usu-

ally involving scrolling through long lists onscreen, sending

emails, or phoning peers. To overcome this obstacle, work-

ers collaborate to maintain a “cheat sheet” (in Excel) which

they each print and keep on a stand next to their monitors.

Step 2: Access data sources

Once workers locate data, accessing it may be hard. For

instance, some HK site creators have refused to let aggrega-

tors access backend databases, so aggregators have resorted

to using “screen scrapers.” As a second example, in order

to analyze data in the accounting database, CI managers

must first export the data to a file on their desktop com-

puter; this export function is only accessible from browsers

running on Windows XP. Our CI also reveals other access

issues, some requiring intervention by technical staff.

Step 3: Vet and repair data quality

Ensuring data quality is a problem in any dataset, but even

more so when humans generate the data. To deal with this,

HK aggregators have promulgated an XML standard for

structuring data. This standard includes fields that help data

users evaluate data’s reliability so they know what data

might need filtering or repair; for example, fields include

the record’s creation date and the contact information of the

record’s creator. However, data quality problems are not

limited to hurricane-devastated areas but can be endemic to

office environments. As one IW respondent has reported,

poor data quality “leaves a lot of database cleaning to be

done before the information can be used for intended pur-

poses.”

Step 4: Cope with incompatibility

After finding, accessing, and vetting data sources, users

seek to combine data. Unfortunately, syntactic (meaning-

free) incompatibility may interfere with combining data,

often due to incompatibility in data layout or encoding. For

example, HK data aggregation involves converting data

from a rows-and-columns database representation into a

hierarchical XML format, with its nested angle-bracket tags

and rules for encoding many characters.

Other incompatibility occurs at a subtle, semantic level,

where two apparently compatible data representations in

fact have incompatible meanings. For example, end users

of HK sites often have used the wrong web forms to enter

data (e.g.: acting as if data about lost pets is semantically

equivalent to data about lost humans, and then using the

“missing persons” form to enter data about missing pets).

This problem’s dual occurs when different systems interpret

the same data in different ways. Formatting incompatibility

is a particular case: Many IW respondents complain that

different applications render data in different ways. For

instance, Firefox and Internet Explorer render HTML dif-

ferently, and WordPerfect and Microsoft Word render rich

text differently. One IW user dislikes needing to “spend to

[sic] much time making something look pretty,” a sentiment

shared by some CI spreadsheet users.

After coping with data incompatibility, users can combine

the data by copy/pasting, concatenating, visual reformat-

ting, arithmetic/calculating, and so forth.

Step 5: Store new data

Software limitations hamper storing new data due to per-

formance, capacity, or access problems. For example, one

HK interviewee notes the lack of scalability in Access for

storing large data sets; similarly, several IW respondents

have noted, “Excel can't handle much data.”

Step 6: Publish new data

Users’ ultimate goal is to publish new data, but helping

others to find it can prove challenging. For many HK site

creators, the main challenge has been getting the media to

report sites’ existence to the world. Data exposure is also a

problem in offices; one IW reader has complained about the

“limited ability for automated report distribution,” while

several CI users must print out documents and distribute

them manually due to insufficient workflow automation.

TOOLS FOR FINDING / ACCESSING / REPAIRING DATA

End users often find data using commercial search tools

whose main function is to draw together numerous scattered

data sources into one index. Such tools are valuable be-

cause users still store and publish data via largely applica-

tion-specific, decentralized, ad hoc mechanisms such as

copying files to a web server or sending emails.

Researchers have recently focused on providing tools to

help end users access and repair data. For example, tools

exist that allow users to automate retrieval and manipula-

tion of web page data [1]; Java-savvy users can even use

such tools to populate spreadsheets [2]. Ensuring data qual-

ity remains difficult, but researchers have made progress in

the web service [3] and spreadsheet [4] domains.

Integrating tools like these with search systems, and extend-

ing them to other domains such as databases and emails,

may raise new usability and reliability challenges that de-

serve further exploration. However, our present research

agenda centers on data incompatibility, which is the main

subject of the following sections.

STRATEGIES FOR COPING WITH INCOMPATIBILITY

Shaw lists strategies to deal with packaging incompatibility

between executable software components A and B [6]:

1. Replace A’s representation with B’s representation.

2. Publish an abstraction of A’s representation.

3. Transform A on the fly to B’s representation.

4. Negotiate to A and B’s lowest common denominator.

5. Make B multilingual.

6. Provide B with import/export.

7. Transform A and B to intermediate representation C.

8. Attach a wrapper to A.

9. Maintain parallel consistent versions of A and B.

Some of these have natural analogues for coping with data

incompatibility. For example, a user can combine data

from spreadsheet A and web page B by running COM-

based scripts on both documents (strategy 2), or by export-

ing the spreadsheet to HTML and referencing it in the web

page with a <FRAME> tag (strategy 6).

Although existing tools lack support for some strategies,

many strategies do prove useful in certain contexts. For

example, database federation exemplifies several of these

strategies [7]. In particular, federated systems must negoti-

ate common protocols on the fly (strategy 4).

Whereas federation deals with database incompatibility,

systems like Citrine deal with office application incompati-

bility [8]. Citrine transforms clipboard data from one repre-

sentation to a standardized intermediate representation

(strategy 7) so that users can copy/paste structured data

among applications.

In terms of software architecture, many of these strategies

can most easily be implemented by interposing a mediator

component between A and B. For example, Microsoft

COM DLLs act as mediators that expose an abstraction of

web pages for scripting (strategy 2). Mediators are known

by various names: “converter” (if used in strategies 3 and

7), “broker” (if used in strategy 4), “translator” (if used in

strategy 5), and “façade” (if used in strategy 8).

Unfortunately, there are inherent challenges to mediator-

based implementation, as discussed below. Moreover, all

nine strategies’ practical utility is limited, as no existing

tool supports the full range of users’ data representations in

database tables, groups of spreadsheet cells, web pages,

documents, and emails.

TACTICS FOR SUCCESSFUL MEDIATION

Effective mediation ideally requires the mediator to recog-

nize the details of the source and destination’s layout, en-

coding, and semantics. For example, Excel can export

spreadsheets to a certain XML schema, but this serves no

purpose if the user needs to import the data into a system

that uses a slightly different XML schema than Excel does.

This sensitivity to a representation’s details leads to two

challenges for making mediator-based strategies successful.

First, in order to be cost-effective, any mediator imple-

mented by a professional should ideally recognize multiple

detailed representations. (Professionals are typically too

expensive to have them create one mediator per detailed

representation.) There are several tactics for achieving this:

1. Let the end user customize mediators’ behavior.

2. Let the end user (rather than a professional) create me-

diators in the first place.

3. Let the end user share customized / created mediators

with other users (permitting further customization).

4. Let mediators automatically customize their own be-

havior when faced with new data representations.

Second, mediators are often not robust to evolution of rep-

resentations, thus provoking manual reprogramming to pre-

vent subtle semantic bugs from jeopardizing data quality.

Researchers have worked toward automatic detection of

evolution in web service semantics [3]; generalizing this

tactic to other representations would be extremely valuable.

Tactics like these are essential to making mediator-based

strategies successful, but some mediators are more amena-

ble than others to these tactics.

FUTURE WORK: ENHANCEMENTS FOR CITRINE

In the future, we hope to apply several of the tactics and

strategies listed above to produce an end user programming

environment that supports a variety of data sources and a

variety of ways to combine data from those sources. As a

start, we will enhance Citrine, a mediator for copy/pasting

structured data [8].

Currently, when end users paste data into a new web form

that they have never before encountered, they each must

train Citrine how to map the data into the form. Essentially,

this equates to customizing the mediator’s behavior (tactic 1

in the list above). We will evaluate five enhancements that

may reduce users’ effort:

1. We will enable users to save a capsule containing a

form’s data so they can reload the capsule and skip the

copy/paste step entirely when reusing data in that form.

2. We will automatically save a capsule each time a user

completes a web form. Thus, the next time that the

user completes similar forms, we may be able to use

the user’s entries in some form fields to predict what

values should go into other fields. This would elimi-

nate manual reloading of capsules.

3. When a user maps data to a form, we will record the

structure of this mapping in a central repository so that

if other users face a similar situation, Citrine can offer

a reasonable default mapping.

4. We will use machine learning to identify the most

commonly occurring mappings so that Citrine can per-

form them automatically.

5. We will explore how visual cues on the page can help

Citrine maintain high quality even if the data sources

and destinations evolve in structure or semantics.

These enhancements should reduce the effort required to

reuse data in web forms and reveal data patterns that may

be of benefit as we tackle data reuse in other contexts.

ACKNOWLEDGMENTS

We thank Andrew Ko for his helpful questions and sugges-

tions. This work was funded in part by the EUSES Consor-

tium via NSF (ITR-0325273), by NSF under Grant CCF-

0438929, by the Sloan Software Industry Center at Carnegie

Mellon, and by the High Dependability Computing Program

from NASA Ames cooperative agreement NCC-2-1298.

Any opinions, findings, and conclusions or recommendations

expressed in this material are those of the authors and do not

necessarily reflect the views of the sponsors.

REFERENCES

1. Elbaum, S., et al. Helping End-Users “Engineer” De-

pendable Web Applications. ISSRE’05, 22-31.

2. Kandogan, E., et al. A1: End-User Programming for

Web-based System Administration. UIST’05, 211-220.

3. Raz, O., Koopman, P., and Shaw, M. Semantic Anomaly

Detection in Online Data Sources. ICSE’02, 302-312.

4. Rothermel, G., et al. A Methodology for Testing Spread-

sheets. TOSEM’01, 110-147.

5. Scaffidi, C., Ko, A., Shaw, M., and Myers, B. Identifying

Categories of End Users Based on the Abstractions That

They Create, Tech Rpt CMU-ISRI-05-110/CMU-HCII-

05-101, Carnegie Mellon University, Pittsburgh PA, 2005.

6. Shaw, M. Architectural Issues in Software Reuse: It's not

Just the Functionality, It's the Packaging. SSR’95, 1-3.

7. Sheth, A., and Larson, J. Federated Database Systems for

Managing Distributed, Heterogeneous, and Autonomous

Databases. CSUR 22, 3 (1990), 183-236.

8. Stylos, J., Myers, B., and Faulring, A. Citrine: Providing

Intelligent Copy-and-Paste. UIST’04, 185-188.

End User Software Engineering: Auditing the Invisible

Joshua B. Gross
School of Information Sciences and Technology

311B IST Building, Penn State University
University Park, PA 16802

+1814 865 9838
jgross@ist.psu.edu

ABSTRACT
In this paper, I will describe the need for new tools to
engage end users in the software engineering process, and
then describe an example of such a tool in a brief
scenario.

INTRODUCTION
In his seminal article on the problems of software
development, Brooks [2] cited the essential invisibility of
software as one of the essential or natural problems that
could never be resolved. His point is accurate, but limited
in its perspective. Work in research and industry has
shown that visibility can be lent to software, but that
visibility is largely a veneer; an attempt to use physical or
mechanical metaphor to explain the processes described
in software.
Unfortunately, this approach is inevitably limited by the
value of the metaphor. New approaches to visualization
are necessary, ones that rely not on metaphor, but on new,
artificial languages that bridge the gap between how
computers operate and how the human mind functions.
These languages must also account for the pragmatic
applications of the software; this aspect is perhaps the
most problematic, but the most critical to bridging the
gap.

THE SOFTWARE ENGINEERING PROBLEM – REDUX
It seems almost superfluous to speak about problems
related to software engineering. The norm for software
engineering projects has been late delivery of overbudget,
substandard, incomplete products. This is for the lucky
projects that deliver at all; the United States has attempted
to replace its air traffic control software three times in the
past twenty years, but despite the millions of US dollars
spent, no such replacement is available.
Much of the problem can be traced to software
engineering (SE) as a discipline. Many software
development processes begin (implicitly or explicitly)
with the statement “assume fixed requirements.” Even if a
process to capture such requirements were available, fixed
requirements are a myth on the order of Sisyphus.
Numerous solutions to the problems of software
engineering have been proposed, and inevitably they have
offered some improvement. Some rely on tools (e.g.
CASE tool, Business Rules), while others rely on
processes (e.g. Extreme Programming and Rational

Unified Process), and others on visualizations that allow
for design and explanation (e.g. the Unified Modeling
Language).
All of these do address some aspect of what Brooks
referred to as “accidents” of software development, but
none solve the problem. Several researchers and
practitioners have proposed that software needs either a
“paradigm shift” or “sea change” to completely rewrite
how software is built. Unfortunately, none has yet been
successful.
It is not the aim of this paper to propose such a change;
the hubris required to attempt such (especially in a three
page workshop paper) is beyond this author. However,
there are clues that show how existing tools, processes,
and languages can be integrated and extended to improve
software development, or, at the very least, lend it
additional visibility.

THE END-USER SOFTWARE ENGINEER
When we consider a profession such as software
engineering, we must initially ask whether end users can
perform this function. As mentioned above, there is no
reason to assume that they would be much worse than
trained software engineers.
However, we cannot reasonably expect non-professionals
to perform certain tasks. Designing taxonomies, creating
flexible architectural components, and building the
unexciting, exceptionally invisible interstitial software
that manages the tiers of a business application are tasks
with limited rewards for anyone other than a professional
developer. Building a small application (e.g. in a
spreadsheet) is within the grasp of many end users, but
building an enterprise application is not.
So if end users cannot be software engineers, and
developers cannot be domain experts, we must meet
somewhere in the middle. Perhaps the best metaphor
would be that of a library. A patron cannot be expected to
build and organize the library, but similarly no librarian
can fully understand the content and import of each
volume. A library is only partly a building filled with
books and periodicals; it is a meeting of minds, skills, and
interests.

A SOFTWARE MEETING OF THE MINDS
Eric Evans has suggested that users, domain experts, and
developers must jointly form a new “ubiquitous
language” [3] that is shared and used by all people
working on building a particular system. This language
creates the possibility of an artificial space in which many
abstract problems of the domain can be made concrete
and “solved”, at least for the limited purpose of the
application.
This idea is excellent, and shows a growing trend to
incorporate the user more fully into the software
development process. Another example can be found in
Extreme Programming, in which an “on-site customer” is
one of twelve required practices [1]. While these practices
are growing in popularity, they often hit a roadblock due
to disengaged and uninterested users.
As with Carroll & Rosson’s “active user”, the “engaged
user” is something of a paradox, concerned with
productivity, possibly at the expense of quality. The
engineering gestalt, which emphasizes robust, reliable
systems, cannot be expected to capture the hearts and
minds of users everywhere.

THE NEED FOR CONVERGENCE
Despite potential limits of interest, we should not dismiss
end-user software engineering. Unfortunately, we haven’t
sufficiently mastered software production in order to
allow us to completely automate the process. The ‘Big
Red Button’ idea that magically translates requirements to
code is not yet a reality.
The question arises, then, what role end users can take in
the software engineering process? However, a slight
modification of the question is more interesting: how can
we modify the software engineering process to
accommodate end users and improve the overall
productivity and quality of the product?
This question allows us to find a convergence: a place
where the needs of the various stakeholders in the process
and outcome of large-scale software development can
come together. In theory, any such convergence is a good
thing, but as discussed above, the different interests and
skills make a positive outcome seem unlikely.

ANSWERING THE CALL
Since we cannot yet solve software engineering problems
en masse, our interim question must be how to take
advantage of this convergence of need. This is not a
question with a single answer, but this paper proposes that
at least one answer can be offered and developed into a
useful practice.
Two recent laws enacted in the United States have
changed how businesses use and view information
systems. HIPAA (the Health Insurance Portability and
Accountability Act) regulates how all medical data is
transferred, and the Sarbanes-Oxley Act has made
corporate officers legally responsible for misreported
corporate earnings and other financial statements.

In both cases, the new laws force organizations to produce
a level of traceability that they have never had to deal
with before. In addition, because both civil and criminal
penalties can be imposed, these new business practices
must be taken seriously. Interestingly, software
developers are largely immune from penalties, but as
others (end users) are not immune, they are greatly
concerned with ensuring that the systems they use
function properly.
Software engineering has an answer; software quality
assurance (SQA), which is concerned with ensuring that
software is validated (matched to requirements) and
verified (technically correct). Unfortunately, SQA
activities are seen as the least engaging, and while tools
have improved (e.g. for requirements traceability and unit
testing), we still have a problem that end users are
probably unwilling to tackle.
I propose, instead, that we incorporate a new method of
investigation, auditing, and create new tools to support
auditing by end users.
To differentiate between auditing and traditional
verification and validation, I will note several changes.
First, auditing implies that someone external (in this case,
to the development process) is performing the action; the
end user is an ideal motivated auditor. Second, the
distinction between verification and validation becomes
moot; the end user does not care why software does or
does not fail. Finally, the goal is different; the end user
will not be concerned about the process that produced the
artifact. The artifact itself is the only thing of interest. In
other words, a piece of software may pass all validation
and verification tests, but still fail an audit.
In order to properly audit software, however, we need
new tools. These tools will be of use and interest to end
users, but will probably enhance the development process.
These tools must visualize how software is functioning.

A METAPHOR FOR MACHINES
We already have many visual languages in active use in
software engineering. However, most (like UML) are
designed to design systems, or, in other words, to explain
how the system will work. At a much later point, a system
is produced from the design, but the system may have
little or no fidelity to the design. Also, even if the artifact
is largely a product of the design, certain elements (often
structural) never make it into the design.
So, what we need is not another design language, nor
even an improved design language. Instead, we need a
language and supporting tool that will allow an end user
to trace aspects of the functioning system. This “auditing”
tool might be seen as something like a debugger; it would
allow the user to “open the hood” on a running process.
However, this is not a proposal for a visual debugger. The
goal of a debugger is tracing, but an end user’s
perspective on what should be traced will be quite
different than the programmer’s perspective.

Additionally, the purpose of this tool is not to explain or
explore the components (e.g. objects or functions) of the
system, although those will be relevant. The purpose is to
expose to the user those aspects that they believe are
important. The scenario described below will explain one
possible use.

A BRIEF SCENARIO: WHERE DID MY MONEY GO?
Jane is an end user involved in developing banking
software. She has worked as a bank teller, personal
banker, and business banker, and has been asked by the
bank to participate in ensuring that the new banking
software functions properly.
In order to perform this task, she has been given a new
monitoring tool. The tool allows her to identify a variable
of interest and follow it through the system. Jane has
decided that she wants to see what happens to an amount
of cash deposited into a checking account.
Jane begins by opening up the teller interface, and
selecting the screen to enter a deposit. She identifies the
deposit as cash, and selects the deposit amount using the
monitoring tool. She then completes the transaction
interaction.
At this point, the tool begins tracking the deposit amount.
Because the new banking software is object-oriented, the
amount is placed in a new instance of the Deposit class,
and this object is presented to Jane in the center of the
monitor tool screen. This object will remain at the center
of the screen throughout Jane’s interaction.
Jane uses the object as a launching point for her
investigation. She follows a link from the Deposit object
to the Account object, and verifies that the account
information is correct. She then decides to watch the
process continue.
The tool automatically stops whenever the members
(instance variables) for the monitored object change. At
one point, an instance of the Transaction class is created
and placed in the object. When Jane sees this, she looks
inside this object, and selects this as an additional object
to monitor.
The tool later notes that the information from the Deposit
class has been written to the database. At this point, Jane
is concerned, because the transaction information has not
been written. She again follows the link to the Account
object, and verifies that the balance has been updated to
reflect the deposit.
Now Jane knows something is wrong; banking
regulations (and best business practices) dictate that a
change to a balance cannot be recorded without first
recording the transaction that caused it. Jane lets the tool
complete, and notes that the transaction information is
eventually written to the database, as well, but she still
feels it should have been done first.
Jane immediately goes to talk to a developer to discuss
this problem. The developer, Ludmilla, looks at the code,

and says to Jane, “Oh, that’s OK, it’s all happening in a
transaction.” Jane is confused; to her, a ‘transaction’ is a
business process, not a technical process.
Jane explains her confusion, and Ludmilla realizes the
mistake. Ludmilla explains the nature and purpose of
isolated database transactions, in which all or none of a
specified set of database writes are allowed to occur. Jane
and Ludmilla use the point of confusion to propose some
new terms.
As a result, the group explicitly uses the terms “database
transaction” and “financial transaction”, and the class
Transaction has been renamed FinancialTransaction. Jane
also uses this point to send an email to the developers of
the monitoring tool to indicate that the tool should note
the boundaries (beginnings and endings) of database
transactions.

FINAL THOUGHTS
Looking at a traditional debugger, one might conclude
that it could be used in the scenario described above.
However, the amount of information on the screen, the
monitoring and step points, and the programming
knowledge needed to use a debugger make this unlikely.
Again, the goal is not to develop a new tool for its own
sake. The idea is to develop a means to allow an end user
to understand what is happening inside the world of a
software application, in order to support a variety of tasks
that can be categorized as auditing.
The advantage of using a visual language (and supporting
tool) comes from using a new, potentially unbiased means
of looking at the auditing problem that is necessarily
limited in size.
We cannot immediately turn the reins of software
engineering over to the end user, but we can use novel
approaches to engage end users in the process at a deeper
level. Traditionally, users have been kept at arm’s length
from the software artifact, but new interventions can
bridge that gap.

REFERENCES
1. Beck, K. Extreme Programming Explained.
Addison-Wesley Professional, 1999.
2. Brooks, F.P., Jr. No Silver Bullet: Essence and
Accidents of Software Engineering. IEEE Computer, 20
(4). 10-19.
3. Evans, E. Domain-Driven Design: Tackling
Complexity at the Heart of Software. Addison-Wesley
Professional, 2003.

End-User Programming Productivity Tools
Andrew J. Ko, Brad A. Myers, Michael J. Coblenz, and Jeffrey Stylos

Human-Computer Interaction Institute
Carnegie Mellon University

Pittsburgh, PA 15213
ajko@cs.cmu.edu, bam@cs.cmu.edu, mcoblenz@andrew.cmu.edu, jsstylos@cs.cmu.edu

http://www.cs.cmu.edu/~marmalade

ABSTRACT
Our research focuses on developing interactive technologies
for a broad range of end-user programming activities,
including code construction, verification, debugging, and
understanding. A common goal among all of these
technologies is to identify core ideas that can be used across
a variety of domains and programmer populations.

INTRODUCTION
Although end-user programmers’ interests vary widely,
spanning the web, animation, documents, databases, mail,
and countless other types of information, all of these users
use programming as a means to an end [10]. Therefore, to
minimize the distractions from end users’ primary goal, it is
essential that end user programming tools are approachable,
easy to learn, and immediately helpful [1].

We are designing several technologies that satisfy these
criteria, including new interaction techniques for editing
code, new languages that help end users identify mistakes,
debugging tools that answer users’ questions about their
program’s output, and workspaces that help them
understand the answers. All of these technologies have been
directly inspired by the empirical research of a variety of
programmer populations and their difficulties [5, 6, 8, 11].

CONSTRUCTING PROGRAMS
Syntax has long been a significant learning barrier in end-
user programming systems, largely because of the difficulty
of understanding and remembering the hidden and complex
rules encoded in language grammars [5]. We have been
working on a new class of code editors that try to help users
construct code by choosing from different options rather
than having to memorize the syntax. Barista [7], shown in
Figure 1, is a Java editor that embodies this approach. It
supports drag and drop interactions for creating and
modifying code and syntactic and semantic auto-
completion, as well as traditional text editing interaction
techniques, all in a modeless editor. Barista also allows
designers of end-user programming systems to embed tools
and information in code, as illustrated by the method header
on the bottom of Figure 1.

Although Barista is currently for Java, its underlying design
and techniques could be an alternative to conventional text
editors across the spectrum of programming languages.

DETECTING ERRORS
Some spreadsheet systems allow users to specify units (e.g.
5 lbs.) with their data in order to help detect unit errors in
calculations. However, most data represented in
spreadsheets is a measurement of a particular kind of object
(e.g., 5 lbs of apples), and it is often inappropriate to
perform calculations on data that represent different kinds
of objects. Slate [2], shown in Figure 2, allows users to

Figure 1. Barista [7], a Java editor that supports drag and
drop, auto-complete menus, and text editing in a single editor,
and embedded, in-context tools and visualizations.

Figure 2. Slate [2], a spreadsheet language that allows users to
give data labels, in order to help identify incorrect input and
formulas. For example, the label “(apples, oranges)” at the
bottom right of the spreadsheet suggests an error, since
nothing can be apples and oranges simultaneously.

represent the object of measurement as a label. By
intelligently propagating labels, Slate can help users
identify incorrect input data and calculations. For example,
in the spreadsheet shown in Figure 2, the result “$179.55
(apples, oranges)” tells the user that one of the formulas is
likely to be incorrect, since nothing can be an apple and an
orange at the same time.

Labels could be used in other end-user domains, such as
animations or dynamic web pages that involve computation
on heterogeneous and semi-structured data.

DEBUGGING PROGRAMS
One reason debugging is the most time-consuming part of
programming is that end users must map their questions
about a program’s behavior onto debugging tools’ limited
support for analyzing code. We have been working on a
new approach called interrogative debugging, which allows
programmers to ask questions directly about their
programs’ output. Our prototype, the Whyline [4], allows
programmers to ask "Why did" and "Why didn't" questions
about their program's output in the Alice programming
environment (www.alice.org). Programmers choose a
question from an automatically generated menu, and the
tool provides an answer, as seen in Figure 3, in terms of the
runtime events that caused or prevented the desired output.
In user studies of the Whyline, users with the Whyline
spent an eighth as much time debugging the same bugs than
users without the Whyline and made 40% more progress.

In generalizing the Whyline, we have begun to apply its
ideas to traditional user interfaces. Our Crystal word
processor [9], seen in Figure 4, allows users to ask
questions such as “Why did this word change from ‘teh’ to
‘the’?” and get answers in terms of the user interface
components and state that were responsible for the word

processor’s behavior. A user study demonstrated that this
helped users solve common problems about 30% faster than
the same word processor without support for questions [9].
We are currently generalizing the Whyline to more complex
and widely used languages, such as Java, in order to
identify issues of scale and assess the range of questions
that people ask about program behavior.

UNDERSTANDING PROGRAMS
Even though their programs tend to be small, end users still
tend to have difficulty relating code to its corresponding
behavior [5]. Furthermore, the interfaces that end users use
to navigate and understand code, mainly windows and tabs,
incur significant navigational overhead [6]. We are
currently designing a new type of workspace that helps
users both interactively and automatically collect fragments
of code and other information that is relevant to their
maintenance or debugging tasks. It will eliminate much of
the navigational overhead, while helping users to quickly
understand dependencies between different parts of their
program.

LEARNING TERMINOLOGY
One common programming activity, even among end-user
programmers [5] is learning to use a collection of external
code in the form of libraries, toolkits, APIs, and
frameworks. Some of the difficulty in this task comes from
the fundamental vocabulary problem [3]: a particular
programming concept can be described in multiple ways
and no one word will best describe it for all programmers.
Mica, shown in Figure 5, attempts to solve this problem by
acting as a thesaurus: programmers supply a description of
the desired functionality, using their own terminology, and

Figure 3. The Whyline [4] which allows users to ask “Why
Did” and “Why Didn’t” questions about their program’s
output, and get answers in terms of the events related to the
behavior in question. In this situation, the user asked why Pac
did not resize, and the answer shows the execution events that
caused the “else” part of the conditional to be executed.

Figure 4. Crystal [9], a word processor that allows users to ask
questions about the document and application state, and get
answers in terms of the user interface components that are
related to the behavior in question. In this situation, a user
asked why a word changed from “teh” to “the”, and the
answer explains that the “Replace text as you type” checkbox
is checked.

Mica finds related classes and methods in the standard Java
APIs in the form of keywords (method, class and interface
names on the left in Figure 5) and regular web search
results (on the right in Figure 5). Mica determines API
keywords by analyzing the content of the Google search
result pages and comparing these to a list of all class and
method names for the standard Java API. The keywords are
ranked based on the frequency with which they appear in
the search result pages for the query and the overall
frequency with which they appear on all pages indexed by
Google. The list of keywords dynamically updates as Mica
loads and processes all of the search result pages.

We plan to expand Mica’s to aid other aspects of API use,
such as understanding high-level API concepts, finding
example code, and integrating examples into programs.

CONCLUSIONS
Our research covers a broad spectrum of programming
activities, and we anticipate that our techniques will
generalize to a variety of domains and programmer
populations. We hope that our broad focus will both inspire
new ideas for commercial programming tools and drive
innovations in end user software engineering research.

ACKNOWLEDGMENTS
We thank our collaborators, including Htet Htet Aung,
Christopher Scaffidi, and David Weitzman. This work was
supported by the National Science Foundation, under NSF
grant IIS-0329090, and as part of the EUSES consortium
(End Users Shaping Effective Software) under NSF grant
ITR CCR-0324770. The first author was supported by an
NDSEG fellowship.

REFERENCES
1. Blackwell, A., First Steps in Programming: A

Rationale for Attention Investment Models, IEEE
Symposia on Human-Centric Computing Languages
and Environments, (2002), 2-10.

2. Coblenz, M. J., Ko, A. J., and Myers, B. A., Using
Objects of Measurement to Detect Spreadsheet
Errors, IEEE Symposium on Visual Languages and
Human-Centric Computing, (2005), 314-316.

3. Furnas, G. W., Gomez, T. K. L. L. M., and Dumais,
S. T., "The Vocabulary Problem in Human-System
Communication," in Communications of the ACM,
30, 1987, 964-971.

4. Ko, A. J. and Myers, B. A., Designing the Whyline:
A Debugging Interface for Asking Questions About
Program Behavior, Human Factors in Computing
Systems, (2004), 151-158.

5. Ko, A. J., Myers, B. A., and Aung, H., Six Learning
Barriers in End-User Programming Systems, IEEE
Symposium on Visual Languages and Human-Centric
Computing, (2004), 199-206.

6. Ko, A. J., Aung, H., and Myers, B. A., Eliciting
Design Requirements for Maintenance-Oriented
IDEs: A Detailed Study of Corrective and Perfective
Maintenance Tasks, International Conference on
Software Engineering, (2005), 126-135.

7. Ko, A. J. and Myers, B. A., Barista: An
Implementation Framework for Enabling New
Interaction Techniques and Visualizations in Code
Editors, ACM Conference on Human Factors in
Computing, (2005), to appear.

8. Ko, A. J. and Myers, B. A., A Framework and
Methodology for Studying the Causes of Software
Errors in Programming Systems, Journal of Visual
Languages and Computing, 16, 1-2, (2005), 41-84.

9. Myers, B. A., Weitzman, D. A., Ko, A. J., and Chau,
D. H., Answering Why and Why Not Questions in
User Interfaces, ACM Conference on Human Factors
in Computing Systems, (2005), to appear.

10. Nardi, B. A., A Small Matter of Programming:
Perspectives on End User Computing. Cambridge,
MA: The MIT Press, 1993.

11. Panko, R., What We Know About Spreadsheet
Errors, Journal of End User Computing, 2, (1998),
15-21.

Figure 5. The Mica web application. Mica includes a keyword
sidebar on the left, which is generated from Google Web API
search results shown on the right. Search result pages
containing code are marked with an icon.

Toward Sharing Reasoning to Improve Fault Localization in
Spreadsheets

Joseph Lawrance, Margaret Burnett, Robin Abraham and Martin Erwig
School of Electrical Engineering and Computer Science

Oregon State University
Corvallis, Oregon 97331

{lawrance,burnett,abraharo,erwig}@eecs.oregonstate.edu

Abstract

Although researchers have developed several ways to reason about
the location of faults in spreadsheets, no single form of reasoning is
without limitations. Multiple types of errors can appear in spread-
sheets, and various fault localization techniques differ in the kinds
of errors that they are effective in locating. Because end users who
debug spreadsheets consistently follow the advice of fault local-
ization systems [9], it is important to ensure that fault localization
feedback corresponds as closely as possible to where the faults ac-
tually appear.

In this paper, we describe an emerging system that attempts to im-
prove fault localization for end-user programmers by sharing the
results of the reasoning systems found in WYSIWYT [13, 14] and
UCheck [1, 6]. By understanding the strengths and weaknesses of
the reasoning found in each system, we expect to identify where
different forms of reasoning complement one another, when differ-
ent forms of reasoning contradict one another, and which heuristics
can be used to select the best advice from each system. By using
multiple forms of reasoning in conjunction with heuristics to choose
among recommendations from each system, we expect to produce
unified fault localization feedback whose combination is better than
the sum of the parts.

1 Introduction

Spreadsheet systems like Excel are among the most widely used
programming systems. Research estimates that the number of end-
user programmers, which includes spreadsheet users, outnumbers
professional programmers by an order of magnitude [15]. Both
end-user programmers and professional programmers often make
mistakes, but end-user programmers rarely possess the organized
test suites and knowledge of software engineering methodologies
that professional programmers have to mitigate problems. Unfortu-
nately, up to 90% or more of spreadsheets contain faults [7, 10]. Be-
cause spreadsheets are often used for important tasks and decisions,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

faults in them have been tied to costly errors.1 The potential risks
of spreadsheet faults extend beyond monetary costs, particularly in
light of the Sarbanes-Oxley Act of 2002, a law which requires cor-
porations to examine the validity of their spreadsheets [8].

Although spreadsheets are essentially a grid of cells, various infor-
mation bases can be extracted out of spreadsheets, and each infor-
mation base can highlight different categories of faults. For exam-
ple, cells often contain explicit relationships to other cells, in the
form of cell references, from which data flow graphs emerge; these
data flow graphs can be used to identify reference faults2 [5]. Fur-
thermore, the juxtaposition of row and column headers against cells
containing data within spreadsheets typically implies spatial rela-
tionships among cells, from which unit inference graphs emerge.
Unit inference can be used to identify certain types of reference,
range, and omission faults [2]. Other information bases supplied
by end users can assist fault localization. For example, the value
of cells is often expected to fall within certain intervals; by assert-
ing intervals on cells, cells whose values fall outside their intervals
can be located [4, 3, 5]. Adding assertions helped significantly with
non-reference faults, suggesting that the addition of assertions into
the environment fills a need not met effectively by the data flow test-
ing methodology alone [5]. Furthermore, in several domains, par-
ticularly finance, it is often the case that two cells within a spread-
sheet must add up to the same value; asserting relationships such as
equality among groups of cells can be used to audit spreadsheets.
Our work in progress to improve fault localization is based on the
assumption that reasoning about faults in only one way is insuffi-
cient to locate several different categories of faults effectively.

Our emerging prototype relies on the results of the independent rea-
soning systems found in UCheck and in WYSIWYT. The two sys-
tems base their judgments on different information bases derived
from spreadsheets: UCheck analyzes the spatial juxtaposition of
row and column headers against data cells, whereas WYSIWYT
uses data flow relationships in conjunction with users’ judgments
to locate faults. By leveraging the reasoning produced from two
different information bases, we expect to produce better feedback.
We believe that sharing the results of reasoning systems in a way
sufficient to locate several categories of faults requires a shared rea-
soning database and heuristics to resolve competing and sometimes
conflicting suggestions from different systems.

1http://www.eusprig.org/stories.htm
2One classification scheme we have found to be useful in our

previous research involves two fault types: reference faults, which
are faults of incorrect or missing references, and non-reference
faults, which are all other faults.

2 Background

2.1 WYSIWYT (What You See is What You
Test)

The fault localization system found in WYSIWYT relies on users
checking off at least some of the cell values that are correct (with
checkmarks) or incorrect (with X-marks) to locate cells contain-
ing faults. By allowing users to incrementally test spreadsheets as
they develop them, the WYSIWYT fault localization and testing
methodology maintains the interactive nature of spreadsheet sys-
tems [12, 11]. WYSIWYT provides automatic, immediate visual
feedback about “testedness” for cell values through cell border col-
ors, and users of WYSIWYT are able to improve their test effective-
ness without training in testing theory [12]. From users’ judgments
of cells, WYSIWYT determines fault likelihood for each cell based
on the backwards slice of cells marked by users as wrong. WYSI-
WYT presents fault localization feedback to users by progressively
shading cells darker the more likely they contain faults, as shown
in Figure 1.

Figure 1. Users’ judgments and fault localization feedback

2.2 UCheck

Figure 2. Headers inferred from spreadsheet layout

To locate faults, UCheck first analyses the spatial structure of the
spreadsheet to then perform unit inference [1, 6]. UCheck exam-
ines the layout to determine the relationship between labels and data
cells, as shown in Figure 2. From this information, UCheck can in-
fer the units that apply to all non-blank cells in the spreadsheet.
For example, UCheck understands that the unit of cell B3 in Fig-
ure 2 represents not just an apple, but also a kind of fruit. UCheck
also understands that B3 also is associated with the month of May.
From this understanding of units, UCheck can identify when cells
inappropriately combine incompatible units, as shown in Figure 3.

Figure 3. Range error identified from analysis

3 The evaluation testbed

Figure 4. The design of the evaluation testbed

Figure 4 shows the design of the evaluation testbed and the sequen-
tial flow of information among the components in the proposed sys-
tem. Between steps 2 and 6 in Figure 4, the reasoning database
propagates cell edits to WYSIWYT and UCheck, then aggregates
fault localization reasoning from each system and finally applies
heuristics to select and combine fault localization feedback from
the two systems to send back to Excel. Note that the design de-
picted in Figure 4 suggests the possibility of including additional
reasoning systems in the future; for now, only the feedback from
WYSIWYT and UCheck are used.

Evaluating the proposed system requires a comparison of the known
faults in a spreadsheet with the feedback generated by WYSIWYT,
UCheck, and the combined feedback from the two systems. Ta-
ble 1 shows the four possible ways fault localization feedback cor-
responds to the actual faults for each cell.

Table 1. Fault localization feedback vs. actual faults
Cell formula

Fault localization feedback Right formula Faulty formula
Cell is Correct CR CF
Cell is Incorrrect IR IF

We are in the process of implementing our prototype so as to em-
pirically investigate the following questions:

• How well do these systems compare in correctly locating
faults (IF)?

• When do these systems falsely identify correct cells as faults
(IR)?

• When do these systems falsely identify faulty cells as correct
(CF)?

• When do the systems diasgree in their feedback?

• What heuristics are most effective in selecting and combining
feedback?

4 Conclusion

We have presented our work in progress on experimenting with and
empirically evaluating the effectiveness of sharing the results from
multiple reasoning systems to improve spreadsheet fault localiza-
tion. We hope that this approach will prove flexible and beneficial
enough to allow a large portfolio of reasoning devices to be brought
to bear on spreadsheet errors.

5 References

[1] R. Abraham and M. Erwig. Header and unit inference for
spreadsheets through spatial analyses. In IEEE Symp. on Vi-
sual Languages and Human-Centric Computing, pages 165–
172, 2004.

[2] R. Abraham and M. Erwig. How to communicate unit error
messages in spreadsheets. In WEUSE I: Proceedings of the
first workshop on End-user software engineering, pages 1–5,
New York, NY, USA, 2005. ACM Press.

[3] Y. Ayalew. Spreadsheet Testing Using Interval Analysis. PhD
thesis, Universität Klagenfurt, 2001.

[4] Y. Ayalew, M. Clermont, and R. Mittermeir. Detecting errors
in spreadsheets. In Proceedings of EuSpRIG 2000 Sympo-
sium: Spreadsheet Risks, Audit and Development Methods,
2000.

[5] M. Burnett, C. Cook, O. Pendse, G. Rothermel, J. Summet,
and C. Wallace. End-user software engineering with asser-
tions in the spreadsheet paradigm. In International Confer-
ence on Software Engineering, pages 93–103, 2003.

[6] M. Erwig and M. Burnett. Adding apples and oranges. In
4th Int. Symp. on Practical Aspects of Declarative Languages,
pages 173–191, 2002.

[7] R. R. Panko. Spreadsheet Errors: What We Know. What We
Think We Can Do. In Proceedings of the Spreadsheet Risk
Symposium, European Spreadsheet Risks Interest Group (Eu-
SpRIG), 2000.

[8] R. R. Panko and N. Ordway. Sarbanes-Oxley: What about all
the spreadsheets? In European Spreadsheet Research Infor-
mation Group, 2005.

[9] A. Phalgune, C. Kissinger, M. Burnett, C. Cook, L. Beckwith,
and J. R. Ruthruff. Garbage in, garbage out? An empirical
look at oracle mistakes by end-user programmers. In IEEE
Symposium on Visual Languages and Human-Centric Com-
puting, 2005.

[10] K. Rajalingham, D. R. Chadwick, and B. Knight. Classifica-
tion of spreadsheet errors. In Symp. of the European Spread-
sheet Risks Interest Group (EuSpRIG), 2001.

[11] G. Rothermel, M. Burnett, L. Li, C. Dupuis, and A. Sheretov.
A Methodology for Testing Spreadsheets. ACM Trans. Soft-
ware Engineering and Methodology, 10(1):110–147, 2001.

[12] K. J. Rothermel, C. R. Cook, M. M. Burnett, J. Schonfeld,
T. R. G. Green, and G. Rothermel. WYSIWYT testing in the
spreadsheet paradigm: An empirical evaluation. In ICSE ’00:
22nd International Conf. Software Engineering, pages 230–
239, 2000.

[13] J. Ruthruff, E. Creswick, M. Burnett, C. Cook, S. Prab-
hakararao, M. F. II, and M. Main. End-user software visu-
alizations for fault localization. In Proceedings of ACM Sym-
posium on Software Visualization, pages 123–132, 2003.

[14] J. R. Ruthruff, S. Prabhakararao, J. Reichwein, C. Cook,
E. Creswick, and M. Burnett. Interactive, visual fault local-
ization support for end-user programmers. Journal of Visual
Languages and Computing, 16(1-2):3–40, 2005.

[15] C. Scaffidi, M. Shaw, and B. Myers. Estimating the numbers
of end users and end user programmers. In M. Erwig and
A. Schürr, editors, IEEE Symposium on Visual Languages and
Human Centric Computing, pages 207–214, 2005.

End-User Software Engineering in
Natural Language

 Abstract
In the search for easier-to-use environments for End-
Users to do software development, everybody
overlooks the obvious choice – using natural language
to communicate between the user and the machine.
Problems of ambiguity and imprecision are usually
taken to be prohibitive, but we believe that modern
natural language processing techniques and Common
Sense reasoning can be used to create a workable
environment for the creation and modification of
programs. We present Metafor, a program
outliner/editor that takes natural language input and
allows a user to have a dialogue with the system about
program construction.

Keywords
Natural language processing, Programming, Software
Engineering, Dialogue management,

Copyright is held by the author/owner(s).

CHI 2006, April 22–28, 2006, Montréal, Québec, Canada.

ACM 1-59593-298-4/06/0004.

Henry Lieberman

MIT Media Lab

20 Ames St. 384A

Cambridge, MA 02139 USA

lieber@media.mit.edu

Hugo Liu

MIT Media Lab

20 Ames St.

Cambridge, MA 02139 USA

hugo@media.mit.edu

Ying Li

MIT Media Lab

20 Ames St.

Cambridge, MA 02139 USA

cyli@media.mit.edu

 2

ACM Classification Keywords
D.1 PROGRAMMING TECHNIQUES (E), D.2 SOFTWARE
ENGINEERING (K.6.3), D.3 PROGRAMMING
LANGUAGES, I.2 ARTIFICIAL INTELLIGENCE

Natural Language Interaction for Software
Engineering
We explore the idea of using descriptions in a natural
language like English as a representation for programs.
While we cannot yet convert arbitrary English
descriptions to fully specified code, we can use a
reasonably expressive subset of English as a
conceptualization, visualization, editing and debugging
tool. Simple descriptions of program objects and their
behavior are converted to scaffolding (underspecified)
code fragments, that can be used as feedback for the
designer, and which can later be elaborated. Roughly
speaking, noun phrases can be interpreted as program
objects; verbs can be functions, adjectives can be
properties. A surprising amount of information about
program structure can be inferred by our parser from
relations implicit in the linguistic structure. We refer to
this phenomenon as programmatic semantics. We
present a program editor, Metafor, that dynamically
converts a user's stories into program code, and in a
user study, participants found it useful as a
brainstorming tool.

Metafor has some interesting capabilities for refactoring
programs. Different ways of describing objects in
natural language can give rise to different
representation and implementation decisions as
embodied in the details of the code. Conventional
programming requires making up-front commitments to
overspecified details, and saddles the user with having

to perform distributed, error-prone edits in order to
change design decisions. Metafor uses the inherent
"ambiguity" of natural language as an advantage,
automatically performing refactoring as the system
learns more about the user's intent.

Figure 1. The Metafor programming environment. Natural

language input at the lower left produces Python code at the

lower right. The other two panes display system state and are

not intended for the end-user.

 3

References
Hugo Liu and Henry Lieberman (2005) Programmatic
Semantics for Natural Language Interfaces.
Proceedings of the ACM Conference on Human Factors
in Computing Systems, CHI 2005, April 5-7, 2005,
Portland, OR, USA. ACM Press.

Hugo Liu and Henry Lieberman (2005) Metafor:
Visualizing Stories as Code. Proceedings of the ACM
International Conference on Intelligent User Interfaces,
IUI 2005, January 9-12, 2005, San Diego, CA, USA, to
appear. ACM 2005.

Hugo Liu and Henry Lieberman (2004) Toward a
Programmatic Semantics of Natural Language.
Proceedings of VL/HCC'04: the 20th IEEE Symposium
on Visual Languages and Human-Centric Computing.
pp. 281-282. September 26-29, 2004, Rome. IEEE
Computer Society Press.

Henry Lieberman and Hugo Liu. Feasibility Studies for
Programming in Natural Language. H. Lieberman, F.
Paterno, and V. Wulf (Eds.) Perspectives in End-User
Development, to appear. Springer, 2006.

Abstractions for End-Users

Michael Toomim
Department of Computer Science

University of Washington
toomim@cs.washington.edu

ABSTRACT
Software Engineers use abstractions to make software scal-
able and avoid inconsistency errors. End-users, however, are
abstraction-averse, preventing them from managing large, com-
plex documents. We have been developing an environment-
based technique, called Linked Editing, as a lightweight form
of abstraction for end-users.

INTRODUCTION
Abstractions are fundamental tools in Software Engineering.
They allow software to scale in size by encapsulating re-used
concepts, and reduce errors by ensuring consistency across
instantiations.

End-users, however, tend to work without abstraction. They
use graphical direct manipulation environments—WYSIWYG
word processors and web page editors, paint and illustration
environments, spreadsheets, 3D CAD environments, music
score editors—where they manipulate concrete objects of their
interest with incremental actions and immediate visual feed-
back. Such environments have succeeded with end-users by
providing concreteinteraction models. However, concrete-
ness forfeits the benefits of abstractions: when Direct Ma-
nipulation documents contain re-used or duplicated content
(e.g. repeated styles) they can be difficult to scale and prone
to inconsistencies.

As a result, interface designers have developed a variety of
special-purpose abstraction facilities for these authoring en-
vironments. Powerpoint provides the concept of an abstract
“master slide” that all concrete slides inherit from. Many mu-
sic sequencers allow the user to specify bars that repeat for
multiple measures. Microsoft Word and the W3C’s HTML
introduce elaborate style sheet systems. Dreamweaver pro-
vides a “template” abstraction to maintain consistent head-
ers, footers, and navigation bars across a website.

Unfortunately, the use of these abstraction features is often
problematic. As put by Green & Blackwell: “Thinking in
abstract terms is difficult: it comes late in children, it comes
late to adults as they learn a new domain of knowledge, and
it comes late within any given discipline.” [5] Abstraction
features are difficult to learn, and each authoring environ-
ment has unique special-purpose abstraction mechanisms, in-

1

User types here

Ghost cursor 2

Clicks to
toggle

Figure 1: Prototype of Linked Editing for programmers
in a text editor

hibiting knowledge transfer. Abstractions are difficult to de-
sign and implement: doing so requires much mental effort
and planning, and unanticipated changes can require a re-
architecture, giving users reason to put off abstraction for
fear of premature commitment. Sometimes end-users avoid
abstract or indirect interfaces because they find concrete op-
erations easier to predict and safer to trust [2]. On the other
hand, designers often constrain the power and applicability
of abstractions in an effort to make them more concrete. The
Powerpoint master slide, for instance: cannot be parameter-
ized, is global and singular (users cannot create multiple slide
styles per presentation), and has a fixed granularity (users
cannot abstract content within a slide, nor abstract sets of
multiple slides). Thus, the master slide’s applicability as an
abstraction mechanism is limited. Content abstractions are
far from panacea: they are difficult to learn, constrained in
applicability, and place layers of indirection between the user
and his or her objects of interest—defeating the original pur-
poses and advantages of Direct Manipulation and concrete
WYSIWYG interaction.

As a result, users often work without abstractions. Even ex-
pert programmers do so—studies show that the Linux kernel,
Java JDK, FreeBSD, MySQL, PostgreSQL, and X Window
System are all 20–30% duplicated, and some software is as
much as 60% duplicated [6, 8, 9]. But end-users are dramati-
cally more abstraction-averse. For instance, Blackwell found
that, in a group of Microsoft Word users, end-users were less
than a tenth as likely to create “text style” abstractions in their
documents as programmers and scientists, even if they knew
how to use that feature of Word [2, 3]. End-users were sim-
ilarly less likely to create a range of other abstractions, such
as nested directory structures, bookmark categories, and tele-
phone quick-dial codes. In another domain, Bellotti reports
that designers principally work in terms of concrete repre-

sentational artifacts, rather than abstract concepts, even if ab-
stractions are available [1]. In software, novice programmers
are known to create fewer abstractions than experts [4]. Thus,
while programmers create far fewer abstractions than would
be ideal, end-users and novices create very few at all.

This is unfortunate. If end-users will not abstract away pat-
terns of duplication, they will be unable to author, under-
stand, and modify digital documents beyond a certain size
and complexity. An abstractionless user could certainly not
extend an abstractionless CNN.com, for example. Nor could
such a user easily work in other domains; e.g. authoring a
computer-graphic landscape with hundreds of trees, or edit-
ing an electronic music score with hundreds of voices. This
would be a regretful scenario, since the ideas on CNN.com’s
website are not difficult for an end-user to comprehend, edit
or express—but rather the structural characteristics of their
transcription in a website.

Linked Editing: Abstraction in concrete interfaces
We believe that an intelligent authoring environments can
remedy this problem. Linked Editing [9] is a novel tech-
nique we are developing for visualizing and editing dupli-
cation without explicit abstraction or additional layers of in-
direction. Our hypotheses are that end-users will prefer its
concrete interaction style over abstraction, and that it will let
them edit larger, more complex documents than they would
otherwise be able to, with fewer errors.

Figure 1 displays the current implementation of Linked Edit-
ing, which was developed for programmers, rather than end-
users, to help them manage duplicated code. The system
automatically finds duplicated code, and highlights common
regions in blue and differences in yellow. Then the user can
edit all instances at once by editing any single instance (a
variant of Simultaneous Editing [7]). If the user wants to
edit just a single instance, she toggles the “Linked Editing”
mode checkbox on the toolbar before typing, and the system
incrementally finds and highlights the new similarities and
differences. Linked Editing allows duplication to be edited
scalably with Simultaneous Editing. By highlighting sim-
ilarities and differences, simultaneous edits are predictable
(blue regions are guaranteed to be identical after arbitrary ed-
its) and unintended inconsistencies are highlighted in yellow
and thus can be avoided.

Linked Editing for web authoring We are now extending
Linked Editing to a variety of end-user authoring environ-
ments. Here we will illustrate how we envision it assisting an
end-user to modify CNN.com in a WYSIWYG web author-
ing environment. First, the system automatically analyzes
the website and finds all patterns of duplication (using a cus-
tom algorithm we are developing). Then, as the user moves
her cursor over a duplicated block of content, such as a navi-
gation bar, the system provides a visualization of the block’s
corresponding copies—miniature depictions of the naviga-
tion bars on other CNN web pages. The user can now change
all navigation bars simultaneously by simply editing any one.
The user can also make changes to any single instance or sub-
set of instances. For example, the user may want to modify
the navigation bars on all “science” pages to have additional
entry for the “computer science” news category. First, she

Figure 2: An elided block of duplication looks similar
to a function definition and use

would select one or two science pages from the miniaturized
visualization. The system then infers by example that the
user is selecting all pages with “science” in their header. It
briefly highlights, in orange, the word “science” in each doc-
ument’s header to indicate the pattern it inferred. The user
now simultaneously edits the desired entry into all science
navigation bars.

Note that introducing a new type of difference amongst du-
plicated instances, as was done here, would be much more
difficult using a traditional template or function abstraction:
the user would have had to add a new template definition, or
parameter in the function definition, to represent the new type
of difference (science or not science page) as well as modify
each use of the function or template to provide the appropri-
ate parameter or select the appropriate template. In general,
abstraction systems become more complicated as additional
differences are required. The system described here, how-
ever, adapts automatically to the concrete content created and
infers an implied inheritance hierarchy behind the scenes.

Transitioning to traditional abstractions Figure 2 shows the
result of clicking a button to elide the identical portions of
block from view, leaving only the differences visible. This is
similar to how a function call hides the function’s body and
shows only parameters. In the future we also envision allow-
ing the user to specify an optional name for a repeated block
of content, and optionally transform the content into a tradi-
tional abstraction. By making names, elision, and simulta-
neous editing optional and independent, the system provides
the user with a continuum of incremental abstraction, letting
users work concretely or abstractly, at their discretion.

Other examples of duplication There are a variety of du-
plication situations in which Linked Editing could be useful
beyond those already given. For instance, spreadsheet users
often copy and paste complex formula between cells, to per-
form similar calculations. Accountants sometimes create du-
plicated versions of entire sheets, with minor changes, to an-
alyze “what-if” scenarios. Secretaries periodically compose
form letters and want them personalized for some recipients,
which is difficult to accomplish with a “database merge” ab-
straction. Music composers repeat melodies and drum beats
across an entire score, but modify them for some measures.
Presenters copy graphical diagrams to multiple slides, mod-
ify them on certain slides to represent change, and then need
to update an aspect of all diagrams at once. Researchers cre-
ate multiple versions of a user study script for each condition
of the experiment, and must be extremely careful to main-
tain differences (the independent variables) as they copy and

paste and evolve the scripts in parallel.

Preliminary results
We conducted a user study comparing Linked Editing with
functional abstraction. Linked Editing took dramatically less
time to implement and use, and resulted in code that pro-
grammers reported as being easier to understand and change [9].
These results are very encouraging, and we suspect they will
be similar for end-users, in non-programming situations.

RELATED WORK
Lapis [7] introduced Simultaneous Editing, but supports one-
off interactive edits rather than persistent abstractions, and
differs from Linked Editing in other ways as described in [9].
Other projects have implemented demonstrational inference
for specific subtypes of duplication (e.g. Tourmaline [10]
infers styles in word processing documents) but are not as
general as Linked Editing.

CONCLUSION
With or without abstractions, authoring and maintaining large
documents is a major challenge in end-user software engi-
neering. By providing abstraction-like scalability benefits
without requiring layers of abstract indirection, Linked Edit-
ing may be a solution that end-users can benefit from.

REFERENCES
1. Victoria Bellotti, Simon Buckingham Shum, Allan

MacLean, and Nick Hammond. Multidisciplinary mod-
elling in hci design...in theory and in practice. InPro-
ceedings of the conference on Human Factors in Com-
puting Systems, pages 146–153, 1995.

2. Alan F. Blackwell. See what you need: Helping end-
users to build abstractions.Journal of Visual Languages
and Computing, 12:475–499, 2001.

3. Alan F. Blackwell. Personal Communication, 2004.

4. Francios Detienne.Software Design – Cognitive As-
pects. Springer, 2002.

5. Thomas Green and Alan Blackwell. Cog-
nitive dimensions of information arte-
facts: a tutorial. BCS HCI Conference,
http://www.ndirect.co.uk/˜thomas.green/workStuff/Papers/,
1998.

6. Zhenmin Li, Shan Lu, Suvda Myagmar, and Yuanyuan
Zhou. Cp-miner: A tool for finding copy-paste and re-
lated bugs in operating system code. InProceedings of
the 6th International Conference on Operating Systems
Design and Implementation, December 2004.

7. Robert C. Miller and Brad A. Myers. Interactive si-
multaneous editing of multiple text regions. InPro-
ceedings of the USENIX Annual Technical Conference,
pages 161–174, 2001.

8. Damith C. Rajapakse and Stan Jarzabek. An investiga-
tion of cloning in web portals. InInternational Confer-
ence on Web Engineering, ICWE’05, pages 252–262.
Springer, July 2005.

9. Michael Toomim, Andrew Begel, and Susan L. Gra-
ham. Managing duplicated code with linked editing.
In Proceedings of the IEEE Symposium on Human-
Centered Computing and Visual Languages (to ap-
pear). IEEE, 2004.

10. Andrew J. Werth and Brad A. Myers. Tourmaline:
Macrostyles by example. InProceedings INTER-
CHI’93: Human Factors in Computing Systems, page
532, April 1993.

End-User Programming at the University of Washington

Daniel S. Weld Pedro Domingos Raphael Hoffman Sumit Sanghai
Department of Computer Science & Engineering

University of Washington, Box 352350
Seattle, WA 98195–2350 USA

Abstract
Over the past decade our research group at the Uni-
versity of Washington has investigated a number
of techniques for improving end-user customiza-
tion and programming. Much of this work has
been reported in the AI literature, and we seek to
participate in the Second Workshop on End-User
Software Engineering in order to expand our un-
derstanding of existing work and alternative ap-
proaches.

1 Introduction
Starting with the Internet Softbots project [5], our research
group at the University of Washington has been seeking new
ways to facilitate end-user customization of their computa-
tional environment. Our work has included:

• Planning-based software agents, which synthesized and
executed small programs from formal specifications [8;
7].

• The SMARTedit and SMARTpython programming-by-
demonstration (PBD) systems, based on version-space
algebra [10; 11].

• Relational Markov Models (RMMs), a learning method
for predicting when a user may start executing a repeti-
tious sequence of actions [1].

• Dynamic Markov Logic Networks, a statistical-
relational learning engine, which improves on both
version-space algebra and RMMs [17].

• The ASSIEME script recommendation engine.

End-user software engineering is especially important
when programs are generated by demonstration with machine
learning algorithms. Errors, debugging and visualization are
important challenges for all programming environments, but
are crucial when statistical or AI techniques are involved.

In the rest of this position paper we briefly describe some
of our work and current directions.

2 Background
Mackay [13] studied the customization behavior of users of
a Unix software environment and found that people do not
take advantage of customization features, even if it made their

work more efficient. The main barrier was the difficulty in
making modifications, and people only did customize when
something broke or they had to learn a new environment. Car-
roll and Rosson [3] suggest that users are biased towards mak-
ing concrete, short-term progress. As a result, they are more
likely to stick with known procedures than invest time learn-
ing about system features. In contrast, a survey on the use of
a word processor by Page et.al. [16] showed that 92% of the
participants did perform some form of customization. How-
ever, the authors remark that most participants were heavy
users and many of the considered customizations were sim-
ple to do.

Although many people seem to be reluctant to customize
their software environment, Mackay [12] and Gantt and
Nardi [6] discovered that members of an organization tend
to share customizations. Typically, some people experiment
with the system and inform other users about useful cus-
tomizations.

From this work, we draw two conclusions, which motivate
our work:
• Users will customize more if it is easier to do so. We

hope PBD will simplify customization.
• Users are often spurred to customize, when inspired by

other users who suggest about useful customizations.
Possibly the interface, itself, could make these sugges-
tions?

3 Research at the University of Washington
Due to space constraints, we limit our discussion to two PBD
systems (one powered by version-space algebra and the other
by dynamic Markov logic networks) and a system for recom-
mending relevant Web browser customizations.

3.1 Programming by Demonstration
In 1998, we started working on machine learning approaches
to programming by demonstration (PBD). Of course, PBD
has been studied extensively [4], but most previous systems
were domain-specific. We sought a domain-independent ap-
proach suitable for deep deployment that offered the expres-
siveness of a scripting language and the ease of macro record-
ing, without its accompanying brittleness.

It is useful to think of a PBD-interface as having three com-
ponents: 1) segmentation determines when the user is execut-
ing an automatable task, 2) trace induction predicts what the

Figure 1: Composite version space for SmartEdit

user is doing from a prefix of her activity trace, and 3) facili-
tation manages user interaction to aid the user in completing
her task. The next section treats segmentation in depth, but
for our PBD work we assumed that the user would notify the
interface when trace induction was desired, via “start” and
“stop” buttons like those in a macro recorder. For the facili-
tation phase, we investigated decision-theoretic control [18],
but many issues (e.g., saving learned procedures for future
use, means for convenient invokation, etc.) remain. The ini-
tial focus of our work was on the trace induction phase.

We formalized PBD trace induction as a learning problem
as follows. A repetitive task may be solved by a program
with a loop, where each iteration solves one instance of the
task. The PBD system must infer the correct program from
a demonstration of the first few iterations. Each action (e.g.,
move, select, copy, paste, . . .) the user performs during this
demonstration causes a change in the state of the application
(e.g., defines a mapping between editor states). Therefore,
we modeled this problem as one of inferring the function that
maps one state to the next, based on observations of the state
prior to and following each user action.

3.2 Version-Space Algebra
PBD presents a particularly challenging machine learning
problem, because users are extremely reluctant to provide
more than a few training instances. Thus the learner must
be able to generalize from a very small number of iterations.
Yet in order to be useful, a wide range of programs must
be learnable. Thus the problem combines a weak bias with
the demand for low sample complexity. Our solution, called
version-space algebra, lets the application designer combine
multiple strong biases to achieve a weaker one that is tailored
to the application, thus reducing the statistical bias for the
least increase in variance. In addition, the learning system
must be able to interact gracefully with the user: presenting
comprehensible hypotheses, and taking user feedback into
account. Version-space algebra addresses this issue as well.

Originally developed for concept learning, a version space
is the subset of a hypothesis space which is consistent with a
set of training instances [15]. If there is a partial order over
candidate hypotheses, one may represent the version space
implicitly (e.g., with boundary sets) and manage updates ef-
ficiently. Version-space algebra defines transformation op-
erators (e.g., union, join, etc.) for combining simple version

spaces into more complex ones. We also developed a proba-
balistic framework for reasoning about the likelihood of each
hypothesis in a composite version space. After constructing
a library of reusable, domain-independent, component ver-
sion spaces, we combined a set of primitive spaces to form a
bias for learning text-editing programs (Figure 1), which was
used in the SmartEdit implementation. Version-space alge-
bra affords two benefits to a PBD system: 1) the ability to
specify domain-specific details necessary to guide a learner
with a simple algebraic expression (i.e., a formula equivalent
to the structure of Figure 1), and 2) a fast learning method
which uses this expression to guide consideration of possible
programs.

3.3 PBD with Dynamic Markov Logic Networks
More recently, we have employed dynamic Markov logic net-
works (DMLNs) [17] to do PBD. DMLNs are a probabilis-
tic extension of first-order and temporal logic which consist
of weighted first-order formulas describing the temporal re-
lationships between the objects in a system. DMLNs can be
used to model and learn stochastic processes, i.e., the precon-
ditions and effects of actions, the transitions between actions
and the relationships between the hidden and observed prop-
erties of objects in the domain. In most real-world domains,
the effects of an action are uncertain and a DMLN repre-
sents this using weighted first-order rules where the higher
the weight, the more likely the effect.

The major advantage of using DMLNs for PBD is that one
can learn first-order rules that capture the preconditions and
effects of an action or transitions between them. For exam-
ple, an expert can demonstrate the task of saving emails to a
newly created folder and would like the PBD system to com-
plete it for them. Using a DMLN, one can learn that the user
was trying to save only those emails that belonged to his the-
sis based on the contents and the sender and recipients. Such
tasks cannot be easily (if at all) learned using propositonal
learners. Another advantage of DMLNs stems from its ro-
bustness to noisy training examples. It is capable of inducing
a program even if the user makes a small error during demon-
stration (it can also identify these mistakes to verify that they
were unintended.

DMLNs also allow us to combine the segmentation and
trace induction phases of PBD. For example, we have mod-
eled the desktop activity of a user simultaneously working on
several tasks (i.e., switching between them). We use a DMLN
to look for common transition patterns (both at the proposi-
tional and first-order level) between the actions to segregate
the tasks and then learn models for each task. Our DMLN
learning method is implemented and works on examples of
the form described above, but has not yet been implemented
into a full PBD system.

3.4 Sharing Browser Customizations
While a PBD system might become easier than manual
programming, program reuse is the focus of the ASSIEME
project. Motivated by Mackay’s observations [12], we seek
ways for users to share browser customizations. In many
ways our system is similar to alerting systems that advice
novice users about system functionality that might be help-
ful, except that the likelihood of the user being unaware is
even greater in our context.

Figure 2: Architecture of ASSIEME.

Specifically, ASSIEME is a recommender system [2] for
client-side Webpage customizations. ASSIEME— designed
as an extension to the Firefox browser — records event traces
of user browsing behavior. This recorded information is
transmitted to a central server, and the server computes cus-
tomization recommendations based on the similarity of mul-
tiple user models, which consist of event traces, installed
customizations, and user responses to previous recommen-
dations. Recommendations are transmitted back to the user
who may accept or reject the installation of a new customiza-
tion. We currently support client-side Webpage customiza-
tions written in JavaScript for the Greasemonkey Firefox ex-
tension.

Since the development of the client-side customization
scripts requires programming skills, our system does at this
point not yet offer the same flexibility as a PBD system. How-
ever, we believe that there are many customizations which
have been developed and made publicly available. Our sys-
tem facilitates sharing of these customizations, which often
exhibit very complex behavior, because they are written by
sophisticated programmers. Our main challenges lie in the
design of an accurate recommendation algorithm and a secure
communication protocol that respects every user’s privacy.

Our work is not the first to addess sharing of customiza-
tions. Kahler [9] developed a system that allows users to ex-
plicitly share word processor customizations with colleagues.
Unlike our approach, Kahler’s system does not automatically
track customization usage nor provides personalized recom-
mendations. Client-side customization for webpages has also
been previously proposed. Miller and Myers [14] integrated
a command shell into a web browser to enable simple forms
of automation. Today, the Greasemonkey extension to the
Firefox webbrowser enables simple installation of more than
3000 publicly available customization scripts.

4 Conclusions
We aspire to the CHI workshop on EUSE, because we stand
to learn much from the community. In particular, our work
has not yet paid sufficient attention to problems, such as in-
forming the user the nature of the program induced by the
PBD algorithm — this is a critical weakness and we believe
that visual programming languages may be a key component
of the solution. Furthermore, we hope that our background
in AI and machine learning could contribute to the workshop
discussions.

References
[1] C. R. Anderson, P. Domingos, and D. S. Weld. Rela-

tional Markov models. KDD-02, August 2002.
[2] John S. Breese, David Heckerman, and Carl Myers

Kadie. Empirical analysis of predictive algorithms for
collaborative filtering. UAI, p43–52, 1998.

[3] John M. Carroll and Mary Beth Rosson. Paradox of the
active user. Interfacing thought: cognitive aspects of
human-computer interaction. pages 80–111, MIT Press,
1987.

[4] Allen Cypher, editor. Watch what I do: Programming
by demonstration. MIT Press, 1993.

[5] O. Etzioni and D. Weld. A softbot-based interface to the
Internet. C. ACM, 37(7):72–6, 1994.

[6] Michelle Gantt and Bonnie A. Nardi. Gardeners and
gurus: patterns of cooperation among cad users. CHI-
92, p107–117, 1992.

[7] K. Golden and D. Weld. Representing sensing actions:
The middle ground revisited. KR-96, p174–185, 1996.

[8] Keith Golden, Oren Etzioni, and Dan Weld. Om-
nipotence without omniscience: Sensor management in
planning. AAAI-94, p1048–1054. 1994.

[9] Helge Kahler. More than words - collaborative tailoring
of a word processor. J. UCS, 7(8):826–847, 2001.

[10] Tessa Lau, Pedro Domingos, and Daniel S. Weld. Ver-
sion space algebra and its application to programming
by demonstration. ICML-00, p527–534, June 2000.

[11] Tessa Lau, Pedro Domingos, and Daniel S. Weld.
Learning programs from traces using version space al-
gebra. K-CAP-03, p36–43, 2003.

[12] W. E. Mackay. Patterns of sharing customizable soft-
ware. CSCW-90, p209–221, 1990.

[13] W. E. Mackay. Triggers and barriers to customizing
software. CHI-91, p153 – 160, 1991.

[14] Robert C. Miller and Brad A. Myers. Integrating a com-
mand shell into a web browser. USENIX Annual Tech-
nical Conference, p171–182, 2000.

[15] T. Mitchell. Generalization as search. Artificial Intelli-
gence, 18:203–226, 1982.

[16] Stanley R. Page, Todd J. Johnsgard, Uhl Albert, and
C. Dennis Allen. User customization of a word pro-
cessor. CHI-96, p340–346, 1996.

[17] S. Sanghai, P. Domingos, and D. Weld. Learning models
of relational stochastic processes. ECML-05, October
2005.

[18] Steven A. Wolfman, Tessa Lau, Pedro Domingos, and
Daniel S. Weld. Mixed initiative interfaces for learning
tasks: Smartedit talks back. IUI-01, p167–174, January
2001.

	cover page.pdf
	Abstract.pdf
	tableOfContents.pdf
	1.pdf
	2.pdf
	3.pdf
	4.pdf
	5.pdf
	6.pdf
	7.pdf
	7blankPageAfter.pdf
	8.pdf
	8blankPageAfter.pdf
	9.pdf
	9blankPageAfter.pdf
	10.pdf
	10blankPageAfter.pdf
	11.pdf
	11blankPageAfter.pdf
	12.pdf
	12blankPageAfter.pdf
	13.pdf

