
Abstractions for End-Users

Michael Toomim
Department of Computer Science

University of Washington
toomim@cs.washington.edu

ABSTRACT
Software Engineers use abstractions to make software scal-
able and avoid inconsistency errors. End-users, however, are
abstraction-averse, preventing them from managing large, com-
plex documents. We have been developing an environment-
based technique, called Linked Editing, as a lightweight form
of abstraction for end-users.

INTRODUCTION
Abstractions are fundamental tools in Software Engineering.
They allow software to scale in size by encapsulating re-used
concepts, and reduce errors by ensuring consistency across
instantiations.

End-users, however, tend to work without abstraction. They
use graphical direct manipulation environments—WYSIWYG
word processors and web page editors, paint and illustration
environments, spreadsheets, 3D CAD environments, music
score editors—where they manipulate concrete objects of their
interest with incremental actions and immediate visual feed-
back. Such environments have succeeded with end-users by
providing concreteinteraction models. However, concrete-
ness forfeits the benefits of abstractions: when Direct Ma-
nipulation documents contain re-used or duplicated content
(e.g. repeated styles) they can be difficult to scale and prone
to inconsistencies.

As a result, interface designers have developed a variety of
special-purpose abstraction facilities for these authoring en-
vironments. Powerpoint provides the concept of an abstract
“master slide” that all concrete slides inherit from. Many mu-
sic sequencers allow the user to specify bars that repeat for
multiple measures. Microsoft Word and the W3C’s HTML
introduce elaborate style sheet systems. Dreamweaver pro-
vides a “template” abstraction to maintain consistent head-
ers, footers, and navigation bars across a website.

Unfortunately, the use of these abstraction features is often
problematic. As put by Green & Blackwell: “Thinking in
abstract terms is difficult: it comes late in children, it comes
late to adults as they learn a new domain of knowledge, and
it comes late within any given discipline.” [5] Abstraction
features are difficult to learn, and each authoring environ-
ment has unique special-purpose abstraction mechanisms, in-

1

User types here

Ghost cursor 2

Clicks to 
toggle

Figure 1: Prototype of Linked Editing for programmers
in a text editor

hibiting knowledge transfer. Abstractions are difficult to de-
sign and implement: doing so requires much mental effort
and planning, and unanticipated changes can require a re-
architecture, giving users reason to put off abstraction for
fear of premature commitment. Sometimes end-users avoid
abstract or indirect interfaces because they find concrete op-
erations easier to predict and safer to trust [2]. On the other
hand, designers often constrain the power and applicability
of abstractions in an effort to make them more concrete. The
Powerpoint master slide, for instance: cannot be parameter-
ized, is global and singular (users cannot create multiple slide
styles per presentation), and has a fixed granularity (users
cannot abstract content within a slide, nor abstract sets of
multiple slides). Thus, the master slide’s applicability as an
abstraction mechanism is limited. Content abstractions are
far from panacea: they are difficult to learn, constrained in
applicability, and place layers of indirection between the user
and his or her objects of interest—defeating the original pur-
poses and advantages of Direct Manipulation and concrete
WYSIWYG interaction.

As a result, users often work without abstractions. Even ex-
pert programmers do so—studies show that the Linux kernel,
Java JDK, FreeBSD, MySQL, PostgreSQL, and X Window
System are all 20–30% duplicated, and some software is as
much as 60% duplicated [6, 8, 9]. But end-users are dramati-
cally more abstraction-averse. For instance, Blackwell found
that, in a group of Microsoft Word users, end-users were less
than a tenth as likely to create “text style” abstractions in their
documents as programmers and scientists, even if they knew
how to use that feature of Word [2, 3]. End-users were sim-
ilarly less likely to create a range of other abstractions, such
as nested directory structures, bookmark categories, and tele-
phone quick-dial codes. In another domain, Bellotti reports
that designers principally work in terms of concrete repre-



sentational artifacts, rather than abstract concepts, even if ab-
stractions are available [1]. In software, novice programmers
are known to create fewer abstractions than experts [4]. Thus,
while programmers create far fewer abstractions than would
be ideal, end-users and novices create very few at all.

This is unfortunate. If end-users will not abstract away pat-
terns of duplication, they will be unable to author, under-
stand, and modify digital documents beyond a certain size
and complexity. An abstractionless user could certainly not
extend an abstractionless CNN.com, for example. Nor could
such a user easily work in other domains; e.g. authoring a
computer-graphic landscape with hundreds of trees, or edit-
ing an electronic music score with hundreds of voices. This
would be a regretful scenario, since the ideas on CNN.com’s
website are not difficult for an end-user to comprehend, edit
or express—but rather the structural characteristics of their
transcription in a website.

Linked Editing: Abstraction in concrete interfaces
We believe that an intelligent authoring environments can
remedy this problem. Linked Editing [9] is a novel tech-
nique we are developing for visualizing and editing dupli-
cation without explicit abstraction or additional layers of in-
direction. Our hypotheses are that end-users will prefer its
concrete interaction style over abstraction, and that it will let
them edit larger, more complex documents than they would
otherwise be able to, with fewer errors.

Figure 1 displays the current implementation of Linked Edit-
ing, which was developed for programmers, rather than end-
users, to help them manage duplicated code. The system
automatically finds duplicated code, and highlights common
regions in blue and differences in yellow. Then the user can
edit all instances at once by editing any single instance (a
variant of Simultaneous Editing [7]). If the user wants to
edit just a single instance, she toggles the “Linked Editing”
mode checkbox on the toolbar before typing, and the system
incrementally finds and highlights the new similarities and
differences. Linked Editing allows duplication to be edited
scalably with Simultaneous Editing. By highlighting sim-
ilarities and differences, simultaneous edits are predictable
(blue regions are guaranteed to be identical after arbitrary ed-
its) and unintended inconsistencies are highlighted in yellow
and thus can be avoided.

Linked Editing for web authoring We are now extending
Linked Editing to a variety of end-user authoring environ-
ments. Here we will illustrate how we envision it assisting an
end-user to modify CNN.com in a WYSIWYG web author-
ing environment. First, the system automatically analyzes
the website and finds all patterns of duplication (using a cus-
tom algorithm we are developing). Then, as the user moves
her cursor over a duplicated block of content, such as a navi-
gation bar, the system provides a visualization of the block’s
corresponding copies—miniature depictions of the naviga-
tion bars on other CNN web pages. The user can now change
all navigation bars simultaneously by simply editing any one.
The user can also make changes to any single instance or sub-
set of instances. For example, the user may want to modify
the navigation bars on all “science” pages to have additional
entry for the “computer science” news category. First, she

Figure 2: An elided block of duplication looks similar
to a function definition and use

would select one or two science pages from the miniaturized
visualization. The system then infers by example that the
user is selecting all pages with “science” in their header. It
briefly highlights, in orange, the word “science” in each doc-
ument’s header to indicate the pattern it inferred. The user
now simultaneously edits the desired entry into all science
navigation bars.

Note that introducing a new type of difference amongst du-
plicated instances, as was done here, would be much more
difficult using a traditional template or function abstraction:
the user would have had to add a new template definition, or
parameter in the function definition, to represent the new type
of difference (science or not science page) as well as modify
each use of the function or template to provide the appropri-
ate parameter or select the appropriate template. In general,
abstraction systems become more complicated as additional
differences are required. The system described here, how-
ever, adapts automatically to the concrete content created and
infers an implied inheritance hierarchy behind the scenes.

Transitioning to traditional abstractions Figure 2 shows the
result of clicking a button to elide the identical portions of
block from view, leaving only the differences visible. This is
similar to how a function call hides the function’s body and
shows only parameters. In the future we also envision allow-
ing the user to specify an optional name for a repeated block
of content, and optionally transform the content into a tradi-
tional abstraction. By making names, elision, and simulta-
neous editing optional and independent, the system provides
the user with a continuum of incremental abstraction, letting
users work concretely or abstractly, at their discretion.

Other examples of duplication There are a variety of du-
plication situations in which Linked Editing could be useful
beyond those already given. For instance, spreadsheet users
often copy and paste complex formula between cells, to per-
form similar calculations. Accountants sometimes create du-
plicated versions of entire sheets, with minor changes, to an-
alyze “what-if” scenarios. Secretaries periodically compose
form letters and want them personalized for some recipients,
which is difficult to accomplish with a “database merge” ab-
straction. Music composers repeat melodies and drum beats
across an entire score, but modify them for some measures.
Presenters copy graphical diagrams to multiple slides, mod-
ify them on certain slides to represent change, and then need
to update an aspect of all diagrams at once. Researchers cre-
ate multiple versions of a user study script for each condition
of the experiment, and must be extremely careful to main-
tain differences (the independent variables) as they copy and



paste and evolve the scripts in parallel.

Preliminary results
We conducted a user study comparing Linked Editing with
functional abstraction. Linked Editing took dramatically less
time to implement and use, and resulted in code that pro-
grammers reported as being easier to understand and change [9].
These results are very encouraging, and we suspect they will
be similar for end-users, in non-programming situations.

RELATED WORK
Lapis [7] introduced Simultaneous Editing, but supports one-
off interactive edits rather than persistent abstractions, and
differs from Linked Editing in other ways as described in [9].
Other projects have implemented demonstrational inference
for specific subtypes of duplication (e.g. Tourmaline [10]
infers styles in word processing documents) but are not as
general as Linked Editing.

CONCLUSION
With or without abstractions, authoring and maintaining large
documents is a major challenge in end-user software engi-
neering. By providing abstraction-like scalability benefits
without requiring layers of abstract indirection, Linked Edit-
ing may be a solution that end-users can benefit from.

REFERENCES
1. Victoria Bellotti, Simon Buckingham Shum, Allan

MacLean, and Nick Hammond. Multidisciplinary mod-
elling in hci design...in theory and in practice. InPro-
ceedings of the conference on Human Factors in Com-
puting Systems, pages 146–153, 1995.

2. Alan F. Blackwell. See what you need: Helping end-
users to build abstractions.Journal of Visual Languages
and Computing, 12:475–499, 2001.

3. Alan F. Blackwell. Personal Communication, 2004.

4. Francios Detienne.Software Design – Cognitive As-
pects. Springer, 2002.

5. Thomas Green and Alan Blackwell. Cog-
nitive dimensions of information arte-
facts: a tutorial. BCS HCI Conference,
http://www.ndirect.co.uk/˜thomas.green/workStuff/Papers/,
1998.

6. Zhenmin Li, Shan Lu, Suvda Myagmar, and Yuanyuan
Zhou. Cp-miner: A tool for finding copy-paste and re-
lated bugs in operating system code. InProceedings of
the 6th International Conference on Operating Systems
Design and Implementation, December 2004.

7. Robert C. Miller and Brad A. Myers. Interactive si-
multaneous editing of multiple text regions. InPro-
ceedings of the USENIX Annual Technical Conference,
pages 161–174, 2001.

8. Damith C. Rajapakse and Stan Jarzabek. An investiga-
tion of cloning in web portals. InInternational Confer-
ence on Web Engineering, ICWE’05, pages 252–262.
Springer, July 2005.

9. Michael Toomim, Andrew Begel, and Susan L. Gra-
ham. Managing duplicated code with linked editing.
In Proceedings of the IEEE Symposium on Human-
Centered Computing and Visual Languages (to ap-
pear). IEEE, 2004.

10. Andrew J. Werth and Brad A. Myers. Tourmaline:
Macrostyles by example. InProceedings INTER-
CHI’93: Human Factors in Computing Systems, page
532, April 1993.


