
Games Programs Play: Obstacles to Data Reuse
Chris Scaffidi

Institute for Software Research Intl.

School of Computer Science

Carnegie Mellon University

cscaffid+isri@cs.cmu.edu

Mary Shaw

Sloan Software Industry Center &

School of Computer Science

Carnegie Mellon University

mary.shaw@cs.cmu.edu

Brad Myers

Human-Computer Interaction Institute

School of Computer Science

Carnegie Mellon University

bam@cs.cmu.edu

ABSTRACT

Information workers often reuse data by taking it from an

existing representation, recombining it to create new data,

and storing the new data in another representation. The

sources and destinations include databases, spreadsheets,

web sites, text documents, and emails. Recombination ac-

tivities are similarly diverse and include copy/pasting, con-

catenating, visual reformatting, arithmetic/calculating, and

so forth. Yet many obstacles impede such reuse. In this

paper, we summarize the problems that users face as well as

some strategies for overcoming these problems.

Author Keywords – data, reuse, software, interoperability

ACM Classification Keywords

H.3.5. Online Information Services: Data sharing.

OBSTACLES USERS HAVE ENCOUNTERED

We have recently conducted three studies that characterize

numerous obstacles impeding effective data reuse by end

users, professional programmers, and everyone in between.

First, preliminary analysis of our contextual inquiry of three

administrative assistants and five managers at Carnegie

Mellon University reveals that much of their work involves

manually copying and pasting data among web pages,

spreadsheets, and emails. Their work is highly repetitive

and ripe for end-user programming—except that they lack

suitable tools.

Second, our finished survey of 831 computer-savvy Infor-

mation Week readers asks what software they use, followed

by the open-response question, “In what ways has this soft-

ware ‘gotten in the way’ of doing work in the past year?”

[5] Of the 527 people who list problems in response, 25%

mention obstacles related to data reuse, especially data in-

compatibility. (By comparison, only 15% mention bugs,

glitches, or other software reliability problems.)

Third, preliminary analysis of telephone interviews with six

people involved in creating Hurricane Katrina “person-

locator” sites suggests that even technically capable people

struggle to reuse data. As these sites redundantly prolifer-

ated in the weeks after Katrina, three of our respondents

helped merge sites into a single whole. Though handcrafted

scripts processed over 500,000 records, numerous problems

forced volunteers to type in another 100,000 manually.

In general, users may perform the following six steps when

reusing data, and obstacles abound at each step. (Below,

“CI” refers to our contextual inquiry, “IW” refers to our

Information Week survey, and “HK” refers to our inter-

views related to Hurricane Katrina person-locator sites.)

Step 1: Find data sources

Reusing data first requires finding it, which can prove tedi-

ous. One IW respondent has expressed unhappiness with

his organization’s “very fragmented data management envi-

ronment,” while another has complained, “Separate files in

separate formats and folders causes [sic] confusion and

need for good organizational skills.” In fact, our CI reveals

that even if users only need a single piece of data to popu-

late a spreadsheet or web form, they may struggle to find

the datum using software and instead fall back on manual

methods. For example, administrative assistants and man-

agers fill out many expense reports that require a project

code for each expense, but looking up codes is slow, usu-

ally involving scrolling through long lists onscreen, sending

emails, or phoning peers. To overcome this obstacle, work-

ers collaborate to maintain a “cheat sheet” (in Excel) which

they each print and keep on a stand next to their monitors.

Step 2: Access data sources

Once workers locate data, accessing it may be hard. For

instance, some HK site creators have refused to let aggrega-

tors access backend databases, so aggregators have resorted

to using “screen scrapers.” As a second example, in order

to analyze data in the accounting database, CI managers

must first export the data to a file on their desktop com-

puter; this export function is only accessible from browsers

running on Windows XP. Our CI also reveals other access

issues, some requiring intervention by technical staff.

Step 3: Vet and repair data quality

Ensuring data quality is a problem in any dataset, but even

more so when humans generate the data. To deal with this,

HK aggregators have promulgated an XML standard for

structuring data. This standard includes fields that help data

users evaluate data’s reliability so they know what data

might need filtering or repair; for example, fields include

the record’s creation date and the contact information of the

record’s creator. However, data quality problems are not

limited to hurricane-devastated areas but can be endemic to

office environments. As one IW respondent has reported,

poor data quality “leaves a lot of database cleaning to be

done before the information can be used for intended pur-

poses.”

Step 4: Cope with incompatibility

After finding, accessing, and vetting data sources, users

seek to combine data. Unfortunately, syntactic (meaning-

free) incompatibility may interfere with combining data,

often due to incompatibility in data layout or encoding. For

example, HK data aggregation involves converting data

from a rows-and-columns database representation into a

hierarchical XML format, with its nested angle-bracket tags

and rules for encoding many characters.

Other incompatibility occurs at a subtle, semantic level,

where two apparently compatible data representations in

fact have incompatible meanings. For example, end users

of HK sites often have used the wrong web forms to enter

data (e.g.: acting as if data about lost pets is semantically

equivalent to data about lost humans, and then using the

“missing persons” form to enter data about missing pets).

This problem’s dual occurs when different systems interpret

the same data in different ways. Formatting incompatibility

is a particular case: Many IW respondents complain that

different applications render data in different ways. For

instance, Firefox and Internet Explorer render HTML dif-

ferently, and WordPerfect and Microsoft Word render rich

text differently. One IW user dislikes needing to “spend to

[sic] much time making something look pretty,” a sentiment

shared by some CI spreadsheet users.

After coping with data incompatibility, users can combine

the data by copy/pasting, concatenating, visual reformat-

ting, arithmetic/calculating, and so forth.

Step 5: Store new data

Software limitations hamper storing new data due to per-

formance, capacity, or access problems. For example, one

HK interviewee notes the lack of scalability in Access for

storing large data sets; similarly, several IW respondents

have noted, “Excel can't handle much data.”

Step 6: Publish new data

Users’ ultimate goal is to publish new data, but helping

others to find it can prove challenging. For many HK site

creators, the main challenge has been getting the media to

report sites’ existence to the world. Data exposure is also a

problem in offices; one IW reader has complained about the

“limited ability for automated report distribution,” while

several CI users must print out documents and distribute

them manually due to insufficient workflow automation.

TOOLS FOR FINDING / ACCESSING / REPAIRING DATA

End users often find data using commercial search tools

whose main function is to draw together numerous scattered

data sources into one index. Such tools are valuable be-

cause users still store and publish data via largely applica-

tion-specific, decentralized, ad hoc mechanisms such as

copying files to a web server or sending emails.

Researchers have recently focused on providing tools to

help end users access and repair data. For example, tools

exist that allow users to automate retrieval and manipula-

tion of web page data [1]; Java-savvy users can even use

such tools to populate spreadsheets [2]. Ensuring data qual-

ity remains difficult, but researchers have made progress in

the web service [3] and spreadsheet [4] domains.

Integrating tools like these with search systems, and extend-

ing them to other domains such as databases and emails,

may raise new usability and reliability challenges that de-

serve further exploration. However, our present research

agenda centers on data incompatibility, which is the main

subject of the following sections.

STRATEGIES FOR COPING WITH INCOMPATIBILITY

Shaw lists strategies to deal with packaging incompatibility

between executable software components A and B [6]:

1. Replace A’s representation with B’s representation.

2. Publish an abstraction of A’s representation.

3. Transform A on the fly to B’s representation.

4. Negotiate to A and B’s lowest common denominator.

5. Make B multilingual.

6. Provide B with import/export.

7. Transform A and B to intermediate representation C.

8. Attach a wrapper to A.

9. Maintain parallel consistent versions of A and B.

Some of these have natural analogues for coping with data

incompatibility. For example, a user can combine data

from spreadsheet A and web page B by running COM-

based scripts on both documents (strategy 2), or by export-

ing the spreadsheet to HTML and referencing it in the web

page with a <FRAME> tag (strategy 6).

Although existing tools lack support for some strategies,

many strategies do prove useful in certain contexts. For

example, database federation exemplifies several of these

strategies [7]. In particular, federated systems must negoti-

ate common protocols on the fly (strategy 4).

Whereas federation deals with database incompatibility,

systems like Citrine deal with office application incompati-

bility [8]. Citrine transforms clipboard data from one repre-

sentation to a standardized intermediate representation

(strategy 7) so that users can copy/paste structured data

among applications.

In terms of software architecture, many of these strategies

can most easily be implemented by interposing a mediator

component between A and B. For example, Microsoft

COM DLLs act as mediators that expose an abstraction of

web pages for scripting (strategy 2). Mediators are known

by various names: “converter” (if used in strategies 3 and

7), “broker” (if used in strategy 4), “translator” (if used in

strategy 5), and “façade” (if used in strategy 8).

Unfortunately, there are inherent challenges to mediator-

based implementation, as discussed below. Moreover, all

nine strategies’ practical utility is limited, as no existing

tool supports the full range of users’ data representations in

database tables, groups of spreadsheet cells, web pages,

documents, and emails.

TACTICS FOR SUCCESSFUL MEDIATION

Effective mediation ideally requires the mediator to recog-

nize the details of the source and destination’s layout, en-

coding, and semantics. For example, Excel can export

spreadsheets to a certain XML schema, but this serves no

purpose if the user needs to import the data into a system

that uses a slightly different XML schema than Excel does.

This sensitivity to a representation’s details leads to two

challenges for making mediator-based strategies successful.

First, in order to be cost-effective, any mediator imple-

mented by a professional should ideally recognize multiple

detailed representations. (Professionals are typically too

expensive to have them create one mediator per detailed

representation.) There are several tactics for achieving this:

1. Let the end user customize mediators’ behavior.

2. Let the end user (rather than a professional) create me-

diators in the first place.

3. Let the end user share customized / created mediators

with other users (permitting further customization).

4. Let mediators automatically customize their own be-

havior when faced with new data representations.

Second, mediators are often not robust to evolution of rep-

resentations, thus provoking manual reprogramming to pre-

vent subtle semantic bugs from jeopardizing data quality.

Researchers have worked toward automatic detection of

evolution in web service semantics [3]; generalizing this

tactic to other representations would be extremely valuable.

Tactics like these are essential to making mediator-based

strategies successful, but some mediators are more amena-

ble than others to these tactics.

FUTURE WORK: ENHANCEMENTS FOR CITRINE

In the future, we hope to apply several of the tactics and

strategies listed above to produce an end user programming

environment that supports a variety of data sources and a

variety of ways to combine data from those sources. As a

start, we will enhance Citrine, a mediator for copy/pasting

structured data [8].

Currently, when end users paste data into a new web form

that they have never before encountered, they each must

train Citrine how to map the data into the form. Essentially,

this equates to customizing the mediator’s behavior (tactic 1

in the list above). We will evaluate five enhancements that

may reduce users’ effort:

1. We will enable users to save a capsule containing a

form’s data so they can reload the capsule and skip the

copy/paste step entirely when reusing data in that form.

2. We will automatically save a capsule each time a user

completes a web form. Thus, the next time that the

user completes similar forms, we may be able to use

the user’s entries in some form fields to predict what

values should go into other fields. This would elimi-

nate manual reloading of capsules.

3. When a user maps data to a form, we will record the

structure of this mapping in a central repository so that

if other users face a similar situation, Citrine can offer

a reasonable default mapping.

4. We will use machine learning to identify the most

commonly occurring mappings so that Citrine can per-

form them automatically.

5. We will explore how visual cues on the page can help

Citrine maintain high quality even if the data sources

and destinations evolve in structure or semantics.

These enhancements should reduce the effort required to

reuse data in web forms and reveal data patterns that may

be of benefit as we tackle data reuse in other contexts.

ACKNOWLEDGMENTS

We thank Andrew Ko for his helpful questions and sugges-

tions. This work was funded in part by the EUSES Consor-

tium via NSF (ITR-0325273), by NSF under Grant CCF-

0438929, by the Sloan Software Industry Center at Carnegie

Mellon, and by the High Dependability Computing Program

from NASA Ames cooperative agreement NCC-2-1298.

Any opinions, findings, and conclusions or recommendations

expressed in this material are those of the authors and do not

necessarily reflect the views of the sponsors.

REFERENCES

1. Elbaum, S., et al. Helping End-Users “Engineer” De-

pendable Web Applications. ISSRE’05, 22-31.

2. Kandogan, E., et al. A1: End-User Programming for

Web-based System Administration. UIST’05, 211-220.

3. Raz, O., Koopman, P., and Shaw, M. Semantic Anomaly

Detection in Online Data Sources. ICSE’02, 302-312.

4. Rothermel, G., et al. A Methodology for Testing Spread-

sheets. TOSEM’01, 110-147.

5. Scaffidi, C., Ko, A., Shaw, M., and Myers, B. Identifying

Categories of End Users Based on the Abstractions That

They Create, Tech Rpt CMU-ISRI-05-110/CMU-HCII-

05-101, Carnegie Mellon University, Pittsburgh PA, 2005.

6. Shaw, M. Architectural Issues in Software Reuse: It's not

Just the Functionality, It's the Packaging. SSR’95, 1-3.

7. Sheth, A., and Larson, J. Federated Database Systems for

Managing Distributed, Heterogeneous, and Autonomous

Databases. CSUR 22, 3 (1990), 183-236.

8. Stylos, J., Myers, B., and Faulring, A. Citrine: Providing

Intelligent Copy-and-Paste. UIST’04, 185-188.

