
Toward Sharing Reasoning to Improve Fault Localization in
Spreadsheets

Joseph Lawrance, Margaret Burnett, Robin Abraham and Martin Erwig
School of Electrical Engineering and Computer Science

Oregon State University
Corvallis, Oregon 97331

{lawrance,burnett,abraharo,erwig}@eecs.oregonstate.edu

Abstract

Although researchers have developed several ways to reason about
the location of faults in spreadsheets, no single form of reasoning is
without limitations. Multiple types of errors can appear in spread-
sheets, and various fault localization techniques differ in the kinds
of errors that they are effective in locating. Because end users who
debug spreadsheets consistently follow the advice of fault local-
ization systems [9], it is important to ensure that fault localization
feedback corresponds as closely as possible to where the faults ac-
tually appear.

In this paper, we describe an emerging system that attempts to im-
prove fault localization for end-user programmers by sharing the
results of the reasoning systems found in WYSIWYT [13, 14] and
UCheck [1, 6]. By understanding the strengths and weaknesses of
the reasoning found in each system, we expect to identify where
different forms of reasoning complement one another, when differ-
ent forms of reasoning contradict one another, and which heuristics
can be used to select the best advice from each system. By using
multiple forms of reasoning in conjunction with heuristics to choose
among recommendations from each system, we expect to produce
unified fault localization feedback whose combination is better than
the sum of the parts.

1 Introduction

Spreadsheet systems like Excel are among the most widely used
programming systems. Research estimates that the number of end-
user programmers, which includes spreadsheet users, outnumbers
professional programmers by an order of magnitude [15]. Both
end-user programmers and professional programmers often make
mistakes, but end-user programmers rarely possess the organized
test suites and knowledge of software engineering methodologies
that professional programmers have to mitigate problems. Unfortu-
nately, up to 90% or more of spreadsheets contain faults [7, 10]. Be-
cause spreadsheets are often used for important tasks and decisions,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

faults in them have been tied to costly errors.1 The potential risks
of spreadsheet faults extend beyond monetary costs, particularly in
light of the Sarbanes-Oxley Act of 2002, a law which requires cor-
porations to examine the validity of their spreadsheets [8].

Although spreadsheets are essentially a grid of cells, various infor-
mation bases can be extracted out of spreadsheets, and each infor-
mation base can highlight different categories of faults. For exam-
ple, cells often contain explicit relationships to other cells, in the
form of cell references, from which data flow graphs emerge; these
data flow graphs can be used to identify reference faults2 [5]. Fur-
thermore, the juxtaposition of row and column headers against cells
containing data within spreadsheets typically implies spatial rela-
tionships among cells, from which unit inference graphs emerge.
Unit inference can be used to identify certain types of reference,
range, and omission faults [2]. Other information bases supplied
by end users can assist fault localization. For example, the value
of cells is often expected to fall within certain intervals; by assert-
ing intervals on cells, cells whose values fall outside their intervals
can be located [4, 3, 5]. Adding assertions helped significantly with
non-reference faults, suggesting that the addition of assertions into
the environment fills a need not met effectively by the data flow test-
ing methodology alone [5]. Furthermore, in several domains, par-
ticularly finance, it is often the case that two cells within a spread-
sheet must add up to the same value; asserting relationships such as
equality among groups of cells can be used to audit spreadsheets.
Our work in progress to improve fault localization is based on the
assumption that reasoning about faults in only one way is insuffi-
cient to locate several different categories of faults effectively.

Our emerging prototype relies on the results of the independent rea-
soning systems found in UCheck and in WYSIWYT. The two sys-
tems base their judgments on different information bases derived
from spreadsheets: UCheck analyzes the spatial juxtaposition of
row and column headers against data cells, whereas WYSIWYT
uses data flow relationships in conjunction with users’ judgments
to locate faults. By leveraging the reasoning produced from two
different information bases, we expect to produce better feedback.
We believe that sharing the results of reasoning systems in a way
sufficient to locate several categories of faults requires a shared rea-
soning database and heuristics to resolve competing and sometimes
conflicting suggestions from different systems.

1http://www.eusprig.org/stories.htm
2One classification scheme we have found to be useful in our

previous research involves two fault types: reference faults, which
are faults of incorrect or missing references, and non-reference
faults, which are all other faults.



2 Background

2.1 WYSIWYT (What You See is What You
Test)

The fault localization system found in WYSIWYT relies on users
checking off at least some of the cell values that are correct (with
checkmarks) or incorrect (with X-marks) to locate cells contain-
ing faults. By allowing users to incrementally test spreadsheets as
they develop them, the WYSIWYT fault localization and testing
methodology maintains the interactive nature of spreadsheet sys-
tems [12, 11]. WYSIWYT provides automatic, immediate visual
feedback about “testedness” for cell values through cell border col-
ors, and users of WYSIWYT are able to improve their test effective-
ness without training in testing theory [12]. From users’ judgments
of cells, WYSIWYT determines fault likelihood for each cell based
on the backwards slice of cells marked by users as wrong. WYSI-
WYT presents fault localization feedback to users by progressively
shading cells darker the more likely they contain faults, as shown
in Figure 1.

Figure 1. Users’ judgments and fault localization feedback

2.2 UCheck

Figure 2. Headers inferred from spreadsheet layout

To locate faults, UCheck first analyses the spatial structure of the
spreadsheet to then perform unit inference [1, 6]. UCheck exam-
ines the layout to determine the relationship between labels and data
cells, as shown in Figure 2. From this information, UCheck can in-
fer the units that apply to all non-blank cells in the spreadsheet.
For example, UCheck understands that the unit of cell B3 in Fig-
ure 2 represents not just an apple, but also a kind of fruit. UCheck
also understands that B3 also is associated with the month of May.
From this understanding of units, UCheck can identify when cells
inappropriately combine incompatible units, as shown in Figure 3.

Figure 3. Range error identified from analysis

3 The evaluation testbed

Figure 4. The design of the evaluation testbed

Figure 4 shows the design of the evaluation testbed and the sequen-
tial flow of information among the components in the proposed sys-
tem. Between steps 2 and 6 in Figure 4, the reasoning database
propagates cell edits to WYSIWYT and UCheck, then aggregates
fault localization reasoning from each system and finally applies
heuristics to select and combine fault localization feedback from
the two systems to send back to Excel. Note that the design de-
picted in Figure 4 suggests the possibility of including additional
reasoning systems in the future; for now, only the feedback from
WYSIWYT and UCheck are used.

Evaluating the proposed system requires a comparison of the known
faults in a spreadsheet with the feedback generated by WYSIWYT,
UCheck, and the combined feedback from the two systems. Ta-
ble 1 shows the four possible ways fault localization feedback cor-
responds to the actual faults for each cell.

Table 1. Fault localization feedback vs. actual faults
Cell formula

Fault localization feedback Right formula Faulty formula
Cell is Correct CR CF
Cell is Incorrrect IR IF

We are in the process of implementing our prototype so as to em-
pirically investigate the following questions:



• How well do these systems compare in correctly locating
faults (IF)?

• When do these systems falsely identify correct cells as faults
(IR)?

• When do these systems falsely identify faulty cells as correct
(CF)?

• When do the systems diasgree in their feedback?

• What heuristics are most effective in selecting and combining
feedback?

4 Conclusion

We have presented our work in progress on experimenting with and
empirically evaluating the effectiveness of sharing the results from
multiple reasoning systems to improve spreadsheet fault localiza-
tion. We hope that this approach will prove flexible and beneficial
enough to allow a large portfolio of reasoning devices to be brought
to bear on spreadsheet errors.

5 References

[1] R. Abraham and M. Erwig. Header and unit inference for
spreadsheets through spatial analyses. In IEEE Symp. on Vi-
sual Languages and Human-Centric Computing, pages 165–
172, 2004.

[2] R. Abraham and M. Erwig. How to communicate unit error
messages in spreadsheets. In WEUSE I: Proceedings of the
first workshop on End-user software engineering, pages 1–5,
New York, NY, USA, 2005. ACM Press.

[3] Y. Ayalew. Spreadsheet Testing Using Interval Analysis. PhD
thesis, Universität Klagenfurt, 2001.

[4] Y. Ayalew, M. Clermont, and R. Mittermeir. Detecting errors
in spreadsheets. In Proceedings of EuSpRIG 2000 Sympo-
sium: Spreadsheet Risks, Audit and Development Methods,
2000.

[5] M. Burnett, C. Cook, O. Pendse, G. Rothermel, J. Summet,
and C. Wallace. End-user software engineering with asser-
tions in the spreadsheet paradigm. In International Confer-
ence on Software Engineering, pages 93–103, 2003.

[6] M. Erwig and M. Burnett. Adding apples and oranges. In
4th Int. Symp. on Practical Aspects of Declarative Languages,
pages 173–191, 2002.

[7] R. R. Panko. Spreadsheet Errors: What We Know. What We
Think We Can Do. In Proceedings of the Spreadsheet Risk
Symposium, European Spreadsheet Risks Interest Group (Eu-
SpRIG), 2000.

[8] R. R. Panko and N. Ordway. Sarbanes-Oxley: What about all
the spreadsheets? In European Spreadsheet Research Infor-
mation Group, 2005.

[9] A. Phalgune, C. Kissinger, M. Burnett, C. Cook, L. Beckwith,
and J. R. Ruthruff. Garbage in, garbage out? An empirical
look at oracle mistakes by end-user programmers. In IEEE
Symposium on Visual Languages and Human-Centric Com-
puting, 2005.

[10] K. Rajalingham, D. R. Chadwick, and B. Knight. Classifica-
tion of spreadsheet errors. In Symp. of the European Spread-
sheet Risks Interest Group (EuSpRIG), 2001.

[11] G. Rothermel, M. Burnett, L. Li, C. Dupuis, and A. Sheretov.
A Methodology for Testing Spreadsheets. ACM Trans. Soft-
ware Engineering and Methodology, 10(1):110–147, 2001.

[12] K. J. Rothermel, C. R. Cook, M. M. Burnett, J. Schonfeld,
T. R. G. Green, and G. Rothermel. WYSIWYT testing in the
spreadsheet paradigm: An empirical evaluation. In ICSE ’00:
22nd International Conf. Software Engineering, pages 230–
239, 2000.

[13] J. Ruthruff, E. Creswick, M. Burnett, C. Cook, S. Prab-
hakararao, M. F. II, and M. Main. End-user software visu-
alizations for fault localization. In Proceedings of ACM Sym-
posium on Software Visualization, pages 123–132, 2003.

[14] J. R. Ruthruff, S. Prabhakararao, J. Reichwein, C. Cook,
E. Creswick, and M. Burnett. Interactive, visual fault local-
ization support for end-user programmers. Journal of Visual
Languages and Computing, 16(1-2):3–40, 2005.

[15] C. Scaffidi, M. Shaw, and B. Myers. Estimating the numbers
of end users and end user programmers. In M. Erwig and
A. Schürr, editors, IEEE Symposium on Visual Languages and
Human Centric Computing, pages 207–214, 2005.


