
End User Software Engineering: Auditing the Invisible

Joshua B. Gross
School of Information Sciences and Technology

311B IST Building, Penn State University
University Park, PA 16802

+1814 865 9838
jgross@ist.psu.edu

ABSTRACT
In this paper, I will describe the need for new tools to
engage end users in the software engineering process, and
then describe an example of such a tool in a brief
scenario.

INTRODUCTION
In his seminal article on the problems of software
development, Brooks [2] cited the essential invisibility of
software as one of the essential or natural problems that
could never be resolved. His point is accurate, but limited
in its perspective. Work in research and industry has
shown that visibility can be lent to software, but that
visibility is largely a veneer; an attempt to use physical or
mechanical metaphor to explain the processes described
in software.
Unfortunately, this approach is inevitably limited by the
value of the metaphor. New approaches to visualization
are necessary, ones that rely not on metaphor, but on new,
artificial languages that bridge the gap between how
computers operate and how the human mind functions.
These languages must also account for the pragmatic
applications of the software; this aspect is perhaps the
most problematic, but the most critical to bridging the
gap.

THE SOFTWARE ENGINEERING PROBLEM – REDUX
It seems almost superfluous to speak about problems
related to software engineering. The norm for software
engineering projects has been late delivery of overbudget,
substandard, incomplete products. This is for the lucky
projects that deliver at all; the United States has attempted
to replace its air traffic control software three times in the
past twenty years, but despite the millions of US dollars
spent, no such replacement is available.
Much of the problem can be traced to software
engineering (SE) as a discipline. Many software
development processes begin (implicitly or explicitly)
with the statement “assume fixed requirements.” Even if a
process to capture such requirements were available, fixed
requirements are a myth on the order of Sisyphus.
Numerous solutions to the problems of software
engineering have been proposed, and inevitably they have
offered some improvement. Some rely on tools (e.g.
CASE tool, Business Rules), while others rely on
processes (e.g. Extreme Programming and Rational

Unified Process), and others on visualizations that allow
for design and explanation (e.g. the Unified Modeling
Language).
All of these do address some aspect of what Brooks
referred to as “accidents” of software development, but
none solve the problem. Several researchers and
practitioners have proposed that software needs either a
“paradigm shift” or “sea change” to completely rewrite
how software is built. Unfortunately, none has yet been
successful.
It is not the aim of this paper to propose such a change;
the hubris required to attempt such (especially in a three
page workshop paper) is beyond this author. However,
there are clues that show how existing tools, processes,
and languages can be integrated and extended to improve
software development, or, at the very least, lend it
additional visibility.

THE END-USER SOFTWARE ENGINEER
When we consider a profession such as software
engineering, we must initially ask whether end users can
perform this function. As mentioned above, there is no
reason to assume that they would be much worse than
trained software engineers.
However, we cannot reasonably expect non-professionals
to perform certain tasks. Designing taxonomies, creating
flexible architectural components, and building the
unexciting, exceptionally invisible interstitial software
that manages the tiers of a business application are tasks
with limited rewards for anyone other than a professional
developer. Building a small application (e.g. in a
spreadsheet) is within the grasp of many end users, but
building an enterprise application is not.
So if end users cannot be software engineers, and
developers cannot be domain experts, we must meet
somewhere in the middle. Perhaps the best metaphor
would be that of a library. A patron cannot be expected to
build and organize the library, but similarly no librarian
can fully understand the content and import of each
volume. A library is only partly a building filled with
books and periodicals; it is a meeting of minds, skills, and
interests.

A SOFTWARE MEETING OF THE MINDS
Eric Evans has suggested that users, domain experts, and
developers must jointly form a new “ubiquitous
language” [3] that is shared and used by all people
working on building a particular system. This language
creates the possibility of an artificial space in which many
abstract problems of the domain can be made concrete
and “solved”, at least for the limited purpose of the
application.
This idea is excellent, and shows a growing trend to
incorporate the user more fully into the software
development process. Another example can be found in
Extreme Programming, in which an “on-site customer” is
one of twelve required practices [1]. While these practices
are growing in popularity, they often hit a roadblock due
to disengaged and uninterested users.
As with Carroll & Rosson’s “active user”, the “engaged
user” is something of a paradox, concerned with
productivity, possibly at the expense of quality. The
engineering gestalt, which emphasizes robust, reliable
systems, cannot be expected to capture the hearts and
minds of users everywhere.

THE NEED FOR CONVERGENCE
Despite potential limits of interest, we should not dismiss
end-user software engineering. Unfortunately, we haven’t
sufficiently mastered software production in order to
allow us to completely automate the process. The ‘Big
Red Button’ idea that magically translates requirements to
code is not yet a reality.
The question arises, then, what role end users can take in
the software engineering process? However, a slight
modification of the question is more interesting: how can
we modify the software engineering process to
accommodate end users and improve the overall
productivity and quality of the product?
This question allows us to find a convergence: a place
where the needs of the various stakeholders in the process
and outcome of large-scale software development can
come together. In theory, any such convergence is a good
thing, but as discussed above, the different interests and
skills make a positive outcome seem unlikely.

ANSWERING THE CALL
Since we cannot yet solve software engineering problems
en masse, our interim question must be how to take
advantage of this convergence of need. This is not a
question with a single answer, but this paper proposes that
at least one answer can be offered and developed into a
useful practice.
Two recent laws enacted in the United States have
changed how businesses use and view information
systems. HIPAA (the Health Insurance Portability and
Accountability Act) regulates how all medical data is
transferred, and the Sarbanes-Oxley Act has made
corporate officers legally responsible for misreported
corporate earnings and other financial statements.

In both cases, the new laws force organizations to produce
a level of traceability that they have never had to deal
with before. In addition, because both civil and criminal
penalties can be imposed, these new business practices
must be taken seriously. Interestingly, software
developers are largely immune from penalties, but as
others (end users) are not immune, they are greatly
concerned with ensuring that the systems they use
function properly.
Software engineering has an answer; software quality
assurance (SQA), which is concerned with ensuring that
software is validated (matched to requirements) and
verified (technically correct). Unfortunately, SQA
activities are seen as the least engaging, and while tools
have improved (e.g. for requirements traceability and unit
testing), we still have a problem that end users are
probably unwilling to tackle.
I propose, instead, that we incorporate a new method of
investigation, auditing, and create new tools to support
auditing by end users.
To differentiate between auditing and traditional
verification and validation, I will note several changes.
First, auditing implies that someone external (in this case,
to the development process) is performing the action; the
end user is an ideal motivated auditor. Second, the
distinction between verification and validation becomes
moot; the end user does not care why software does or
does not fail. Finally, the goal is different; the end user
will not be concerned about the process that produced the
artifact. The artifact itself is the only thing of interest. In
other words, a piece of software may pass all validation
and verification tests, but still fail an audit.
In order to properly audit software, however, we need
new tools. These tools will be of use and interest to end
users, but will probably enhance the development process.
These tools must visualize how software is functioning.

A METAPHOR FOR MACHINES
We already have many visual languages in active use in
software engineering. However, most (like UML) are
designed to design systems, or, in other words, to explain
how the system will work. At a much later point, a system
is produced from the design, but the system may have
little or no fidelity to the design. Also, even if the artifact
is largely a product of the design, certain elements (often
structural) never make it into the design.
So, what we need is not another design language, nor
even an improved design language. Instead, we need a
language and supporting tool that will allow an end user
to trace aspects of the functioning system. This “auditing”
tool might be seen as something like a debugger; it would
allow the user to “open the hood” on a running process.
However, this is not a proposal for a visual debugger. The
goal of a debugger is tracing, but an end user’s
perspective on what should be traced will be quite
different than the programmer’s perspective.

Additionally, the purpose of this tool is not to explain or
explore the components (e.g. objects or functions) of the
system, although those will be relevant. The purpose is to
expose to the user those aspects that they believe are
important. The scenario described below will explain one
possible use.

A BRIEF SCENARIO: WHERE DID MY MONEY GO?
Jane is an end user involved in developing banking
software. She has worked as a bank teller, personal
banker, and business banker, and has been asked by the
bank to participate in ensuring that the new banking
software functions properly.
In order to perform this task, she has been given a new
monitoring tool. The tool allows her to identify a variable
of interest and follow it through the system. Jane has
decided that she wants to see what happens to an amount
of cash deposited into a checking account.
Jane begins by opening up the teller interface, and
selecting the screen to enter a deposit. She identifies the
deposit as cash, and selects the deposit amount using the
monitoring tool. She then completes the transaction
interaction.
At this point, the tool begins tracking the deposit amount.
Because the new banking software is object-oriented, the
amount is placed in a new instance of the Deposit class,
and this object is presented to Jane in the center of the
monitor tool screen. This object will remain at the center
of the screen throughout Jane’s interaction.
Jane uses the object as a launching point for her
investigation. She follows a link from the Deposit object
to the Account object, and verifies that the account
information is correct. She then decides to watch the
process continue.
The tool automatically stops whenever the members
(instance variables) for the monitored object change. At
one point, an instance of the Transaction class is created
and placed in the object. When Jane sees this, she looks
inside this object, and selects this as an additional object
to monitor.
The tool later notes that the information from the Deposit
class has been written to the database. At this point, Jane
is concerned, because the transaction information has not
been written. She again follows the link to the Account
object, and verifies that the balance has been updated to
reflect the deposit.
Now Jane knows something is wrong; banking
regulations (and best business practices) dictate that a
change to a balance cannot be recorded without first
recording the transaction that caused it. Jane lets the tool
complete, and notes that the transaction information is
eventually written to the database, as well, but she still
feels it should have been done first.
Jane immediately goes to talk to a developer to discuss
this problem. The developer, Ludmilla, looks at the code,

and says to Jane, “Oh, that’s OK, it’s all happening in a
transaction.” Jane is confused; to her, a ‘transaction’ is a
business process, not a technical process.
Jane explains her confusion, and Ludmilla realizes the
mistake. Ludmilla explains the nature and purpose of
isolated database transactions, in which all or none of a
specified set of database writes are allowed to occur. Jane
and Ludmilla use the point of confusion to propose some
new terms.
As a result, the group explicitly uses the terms “database
transaction” and “financial transaction”, and the class
Transaction has been renamed FinancialTransaction. Jane
also uses this point to send an email to the developers of
the monitoring tool to indicate that the tool should note
the boundaries (beginnings and endings) of database
transactions.

FINAL THOUGHTS
Looking at a traditional debugger, one might conclude
that it could be used in the scenario described above.
However, the amount of information on the screen, the
monitoring and step points, and the programming
knowledge needed to use a debugger make this unlikely.
Again, the goal is not to develop a new tool for its own
sake. The idea is to develop a means to allow an end user
to understand what is happening inside the world of a
software application, in order to support a variety of tasks
that can be categorized as auditing.
The advantage of using a visual language (and supporting
tool) comes from using a new, potentially unbiased means
of looking at the auditing problem that is necessarily
limited in size.
We cannot immediately turn the reins of software
engineering over to the end user, but we can use novel
approaches to engage end users in the process at a deeper
level. Traditionally, users have been kept at arm’s length
from the software artifact, but new interventions can
bridge that gap.

REFERENCES
1. Beck, K. Extreme Programming Explained.
Addison-Wesley Professional, 1999.
2. Brooks, F.P., Jr. No Silver Bullet: Essence and
Accidents of Software Engineering. IEEE Computer, 20
(4). 10-19.
3. Evans, E. Domain-Driven Design: Tackling
Complexity at the Heart of Software. Addison-Wesley
Professional, 2003.

