

Using Information Scent to Model the Dynamic Foraging
Behavior of Programmers in Maintenance Tasks

Joseph Lawrance1,2, Rachel Bellamy2, Margaret Burnett1, Kyle Rector1
1Oregon State University

School of EECS
Corvallis, Oregon 97331

{lawrance,burnett,rectorky@eecs.oregonstate.edu}

2IBM T.J. Watson Research
19 Skyline Drive

Hawthorne, New York 10532
rachel@us.ibm.com

ABSTRACT
In recent years, the software engineering community has
begun to study program navigation and tools to support it.
Some of these navigation tools are very useful, but they
lack a theoretical basis that could reduce the need for ad
hoc tool building approaches by explaining what is funda-
mentally necessary in such tools. In this paper, we present
PFIS (Programmer Flow by Information Scent), a model
and algorithm of programmer navigation during software
maintenance. We also describe an experimental study of
expert programmers debugging real bugs described in real
bug reports for a real Java application. We found that PFIS’
performance was close to aggregated human decisions as to
where to navigate, and was significantly better than indi-
vidual programmers’ decisions.

Author Keywords
Information foraging, debugging, software maintenance

ACM Classification Keywords
D.2.5 [Software Engineering]: Testing and Debugging;
H.1.2 [Information Systems]: User/Machine Systems—
Human factors

INTRODUCTION
Is navigating code like navigating the web? Do program-
mers navigate source code in search of a bug in the same
way that people navigate the web in search of particular
information? Can the behavior of programmers navigating
source code be described using the same theories and mod-
els that have been used to describe web navigation?

In software maintenance, code navigation is a central task.
The importance of navigation to programming tasks such as
maintenance and debugging is beginning to become recog-
nized [7, 15]. One study showed that programmers spend
35% of their on-line time navigating code [13]. Several
research efforts, mostly in the software engineering com-

munity, have begun research to try to solve this problem [5,
7, 16, 24, 28]. The research falls mainly into two categories:
development of new tools without a theoretical basis, and
derivation of new descriptive theories ground-up from data.

However, we believe that an existing theory, namely infor-
mation foraging theory [21], can improve upon both of
these approaches. In particular, we propose that information
foraging theory can provide the foundations needed for tool
development. This theory is more attractive than building
new theories particular to navigation, because it has been
empirically shown to be a good predictive theory in its own
domain (namely, web browsing). Thus, it has mature roots,
and in that domain it has become widely accepted and es-
tablished as a useful basis for tool development. We there-
fore decided to investigate how information foraging theory
might model programmers’ navigation behavior in debug-
ging and maintenance.

In this paper, we present PFIS (Programmer Flow by In-
formation Scent), a model and accompanying algorithm to
predict programmers’ dynamic navigation behavior during
program maintenance tasks. Information foraging theory
uses the concept of scent to determine where someone will
go when searching for information related to their goal. We
believe that programmers may be information foragers
when debugging, because research has shown that when
debugging, programmers create hypotheses and then search
for information to verify (or refute) these hypotheses. Fur-
thermore, we conjecture that such hypotheses are linguisti-
cally related to the words in the bug reports. According to
these assumptions, the bug report defines the programmer’s
goal and the scent they are seeking.

As with information foraging models that have been used to
model web behavior, the PFIS model takes into account
both the source code’s topology (analogous to links on web
pages) and its “scent.” Using these concepts, PFIS predicts
that programmers will visit the source code with the highest
scent in relation to the bug report. The PFIS algorithm
builds on the WUFIS (Web User Flow by Information
Scent) algorithm [3], adapting and extending the approach
used in WUFIS to model programmer navigation during
software maintenance.

We also present an experiment that investigates the extent

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
CHI 2008, April 5–10, 2008, Florence, Italy.
Copyright 2008 ACM 978-1-60558-011-1/08/04…$5.00

CHI 2008 Proceedings · Activity-Based Prototyping and Software April 5-10, 2008 · Florence, Italy

1323

PFIS can model the places to which programmers navigate
to during two software maintenance tasks. We compare the
PFIS results to competing possible predictors of where
these programmers would navigate: a model based on word
“scent” without making use of topology, a model based on
topology without scent, and other programmers’ navigation
patterns both pairwise and aggregated. We finally consider
elements of program navigation not modeled by our infor-
mation foraging model, and their relationships with infor-
mation foraging.

BACKGROUND AND RELATED WORK
Information Foraging
Information foraging theory emerged from the PARC labs
in the mid-90’s, led by Pirolli and Card [21]. Inspired by
appeals in the psychological literature for ecological ac-
counts of contextually dependent human behaviors, infor-
mation foraging theory offered a new perspective for those
attempting to develop theoretical accounts of HCI that
could be applied to tool design. Ecological theories contrast
with information processing theories such as GOMS, that at
the time did not account for effects of context.

Information foraging theory is based on optimal foraging
theory, a theory of how predators and prey behave in the
wild. In the domain of information technology, the predator
is the person in need of information and the prey is the in-
formation itself. Using concepts such as “patch,” “diet” and
“scent,” information foraging theory describes the most
likely pages (patches) a web-site user will visit in pursuit of
their information need (prey), by clicking links containing
words that are a close match to (smell like) their informa-
tion need. The scent of information comes from the linguis-
tic relationships between words expressing an information
need and words contained in links to web pages. The preda-
tor/prey model, when translated to the information technol-
ogy domain, has been shown to mathematically model
which web pages human information foragers select on the
web [20], and therefore has become useful as a practical
tool for web site design and evaluation [4, 18, 23, 29].

The work described in this paper builds on the WUFIS al-
gorithm (Web User Flow by Information Scent) [3, 4], an
empirically validated algorithm approximating information
foraging theory as defined by Pirolli et al’s SNIF-ACT
model [22]. The advantage of WUFIS over SNIF-ACT is
that WUFIS can be readily applied in new contexts,
whereas SNIF-ACT is a fully functioning cognitive model,
and must be customized for each information foraging con-
text being studied. The WUFIS algorithm encodes link
quality as a function of its match to the users’ information
need. Someone is more likely to select the link on a page
that appears to have the highest probability of eventually
leading them to the page best matching their information
need. Flow refers to users surfing through the web site
moving from page to page by clicking on the highest scent
links on the page, and is modeled using spreading activation
over the link topology. Scent is computed as a function of
the term frequency of words in a query and the term fre-

quency of words in or near a link. The usability of a site for
a particular query is determined by running WUFIS to ob-
tain the probable number of users that would reach each
page by following cues that best match the query.

This work in this paper also builds upon the work of [17].
Programmers debugging code may be information foragers
in that they form hypotheses and then hunt for information
to verify these hypotheses. A study of programmers at-
tempting to fix bugs found an interword’ correlation be-
tween the bug report and the set of classes visited by the
programmers [17]. That work presented evidence based on
a static view of these interword’ correlations, but did not
present a model per se. This paper, in contrast, contributes a
model of information foraging, together with an algorithm,
that takes into account programmers’ dynamic program
navigation behavior.

Program Navigation and Maintenance
In recent years, the software engineering community has
begun to study program navigation and tools to support it.
For example, Robillard et al. studied navigation qualita-
tively with a controlled experiment of 5 graduate student
developers [24], from which they derived a descriptive the-
ory. Their theory focuses on the importance of methodical
investigation; it does not suggest information foraging prin-
ciples, but it is consistent with them. However, as they
point out, elements of their experimental design may have
encouraged methodical investigation. Fundamental differ-
ences from our work are that our use of theory focuses on
the potential cause of methodical investigation (namely,
information foraging) rather than on its presence and effect,
our study does not create new theories but rather investi-
gates the applicability of existing theory, and our theory is
intended to be predictive rather than simply descriptive.
In Ko et al.’s investigation of developer behavior during
software maintenance, the participants—student developers
working in Eclipse with 9 source files—spent 35% of their
time navigating source code [13]. Their surprising result
made clear the importance of trying to understand how pro-
grammers go about navigating, and how to help them save
time while doing so. This finding led to the development of
a descriptive model of program understanding [16], which
proposes that the cues (e.g., identifier names, comments,
and documentation) in an environment are central to search-
ing, relating, and navigating code in software maintenance
and debugging. Although they did not investigate scent per
se, their model is philosophically similar to information
foraging theory.
DeLine et al. [8] conducted empirical work into problems
arising in software developers’ navigations through unfa-
miliar code. Their work turned up two major problems:
developers needed to scan a lot of the source code to find
the important pieces (echoing the finding of [13]), and they
tended to get lost while exploring. These results inspired the
idea to combine collaborative filtering and computational
“wear” [10] from users’ interaction histories into a concept
they call “wear-based filtering”.

CHI 2008 Proceedings · Activity-Based Prototyping and Software April 5-10, 2008 · Florence, Italy

1324

A number of software engineering tools have begun to be
developed that are also based on concepts of “togetherness”
as defined by developer navigation/editing actions. Some of
these approaches harvest simultaneous change information
from source version control systems such as CVS, to obtain
this type of information (e.g., [27, 31, 32] and others har-
vest togetherness directly from developer behavior logs
(e.g., [7, 12, 25, 26, 28]). A system that is particularly per-
tinent is Hipikat [5] which remembers paths traversed by
earlier members of a team, and uses hand-crafted textual
similarity to support search for code-related artifacts.
Evaluations showed that newcomers using Hipikat achieve
results comparable in quality and correctness to those of
more experienced team members.

These tools and analyses have not been grounded in theory,
but their empirical success shows that they are useful. Our
premise is that the information foraging model may explain
why they are useful, and may usefully guide the develop-
ment of future program maintenance and debugging tools.

THE PFIS ALGORITHM
To examine whether information foraging theory can pre-
dict the classes and methods programmers will visit, and the
paths they will take as they navigate through code in search
of relevant places to fix bugs, we created PFIS. PFIS is
based upon the web user flow by information scent
(WUFIS) algorithm [3], which combines information re-
trieval techniques with spreading activation. As WUFIS
does for web path following, PFIS calculates the probability
that a programmer will follow a particular “link” from one
class or method in the source code to another, given a spe-
cific information need.

Consider the notion of links in the domain of program navi-
gation. According to information foraging theory, the path
an information forager will take is determined by the scent
of proximal cues of a particular link in relation to their in-
formation need. In WUFIS, hyperlinks serve as the way
information foragers navigate between pages, and thus the
words in or near hyperlinks serve as proximal cues an in-
formation forager can use to choose among which links to
follow in pursuit of a goal. In PFIS, we define a link to be
any means a programmer can use to navigate directly in one
click to a specific place in source code, excluding scrolling
between methods within a class or browsing among classes
within a package. Thus, the definition of links takes into
account the features of the programming environment. As
in hyperlinks, links in programs have proximal cues associ-
ated with them: for example, a link from a method defini-
tion to a method invocation includes the name of the object
of the invoked method, the name of the invoked method,
and the names of the variables passed in as parameters to
the invoked method.

For example, the Eclipse Package Explorer and Outline
views allow programmers to navigate from packages to
classes to fields and methods (one click each). Eclipse also
allows programmers to open definitions and search for ref-

erences to a method, variable, or a type in one click. There-
fore, packages link to member classes, classes link to their
fields and methods, methods link to the methods they in-
voke, and variables link to their type.

Due to the many one-click links, program navigation has
two fundamental differences from web page navigation.
First, what counts as a link is well-defined in a web site,
whereas every identifier in a program may be (and is, in
Eclipse) associated with a link to some definition or use.
Second, source code has a much denser “link” topology
than web pages, so there are many more ways to navigate to
the same place. Such differences meant that, to extend the
ideas of WUFIS to program navigation required defining
the notion of links in source code, finding ways to process
them, and defining the terms in and near a link that should
be used and how to compute the scent of a link.

Another difference between PFIS and WUFIS is that PFIS
is necessarily more “real world” than WUFIS. Some as-
sumptions/controls that simplify the problem domain were
made when developing WUFIS into the Bloodhound usabil-
ity service [4], but they are not viable for the domain of
program navigation. This implementation is an important
point of comparison for the work presented here, because it
was used in a study validating the predictions made by the
WUFIS algorithm.

These simplifying assumptions/controls were (1) to disal-
low the use of search, which is not a reasonable limitation
to place on a programmer attempting to maintain software
(in our study programmers could choose to go anywhere
once they had looked at the bug report); (2) to have only
one web page open at a time (in our study programmers
could keep class files open in tabbed panes); (3) to give
pages that did not have any links in them a link back to the
starting page, which we could not do since we wanted to
use PFIS on real-world software without modifying it; and
(4) to remove the scent for links on the desired target
document. This latter simplification was based on the as-
sumption that people stopped searching when they reached
the target and hence would not select any of the links on a
target page. We cannot assume a target destination, because
there is often no one “correct” target for a code mainte-
nance task.

PFIS is summarized in Figure 1. We explain how each step
is accomplished next.

Central to WUFIS is a description of the link topology of
the web site, describing each link in terms of which page it
is on, and which page it points to. For example, Figure 2
shows on the left four nodes, and the links between them. In
WUFIS, the nodes are web pages; in PFIS the nodes are
anything that is the destination of a link, e.g., method defi-
nitions, method invocations, variable definitions, etc. The
link topology is described by the matrix on the right. For
step 1 of the PFIS algorithm, to create the link topology of
source code, we created an Eclipse JDT plugin [9] to trav-
erse each class and method in each compilation unit, and

CHI 2008 Proceedings · Activity-Based Prototyping and Software April 5-10, 2008 · Florence, Italy

1325

used the Java Universal Network/Graph Framework [11] to
construct the link topology (adjacency matrix) T,
which gives us the beginning (i) and end points (j) for each
link that a programmer can follow.

Steps 2 and 3 determine the proximal scent of each link
relative to the bug report (Figure 3). Proximal scent is the
information foraging term referring to “scent” near the link.
For step 2 of PFIS, we developed a special tokenizer for
words in cues, so that CamelCase identifiers (e.g.,
“NewsItem.getSafeXMLFeedURL()”) would be split into
their constituent words (“news item get safe xml feed url”),
and also employed a standard stemming algorithm on the
constituent words.

For step 3 of PFIS, the scent is determined by the similarity
of words in the bug report to the text that labels the link and
in close proximity to the link. We used Lucene [6], an
open-source search engine API to index the proximal cues
(the text) associated with each link. Lucene uses TF-IDF
[1], a technique commonly used in information retrieval to
weight the importance of words in documents. For our pur-
poses, we treated the bug report as the query, and the
proximal cues of each link as a document. Lucene deter-
mined the cosine similarity of each link in relation to the
bug report to determine the scent of each link. We used
these results as weights for the edges in T, producing a
proximal scent matrix PS.

In step 4, PFIS normalizes PS so that each column sums to
1, thus producing a column-stochastic matrix. In effect,
each column contains the probability that a programmer

will follow a link from one location to another. Thus, at the
end of step 4, the proximal scent relative to the bug report
has been calculated, reflecting the information foraging
premise that links in the source with proximal cues close to
the important words in the bug report will smell more
strongly of the bug, and are thus more likely to be followed.

Steps 5, 6 and 7 simulate programmers navigating through
the source code, following links based on scent. Spreading
activation is an iterative algorithm used widely by HCI

Algorithm PFIS (Programmer Flow by Information Scent)
Given: Bug report, body of source code
Returns: A vector containing for each package, class,
method, and variable, the probability that a programmer
will visit that area of source code given the bug report.

Step 1. Determine link topology of source code and store
them in matrix T.

Step 2. Determine set of proximal cues around each link.
Step 3. Determine proximal scent of each link to the bug

report, and store the resulting similarity scores in ma-
trix PS.

Step 4. Normalize matrix PS so that each column sums to
1.00 (i.e., generate a column-stochastic matrix).

Step 5. Define the starting place (class or method) for the
spreading activation, and create an entry vector E with
the starting location given a 1.

Step 6. Calculate the probability of programmers going
from the starting location to other documents by mul-
tiplying the entry vector E=A(1) by PS, to create an
activation vector A(2).

Step 7. Repeat step 6 to simulate programmers traversing
through the link topology. The final activation vector
A(n), when normalized, contains for each location the
expected probability that a programmer will visit that
location given the bug report.

Figure 1: The PFIS algorithm.

Figure 2: Link topology (adjacency) matrix ‘T’

Figure 3: Create the normalized proximal scent matrix ‘PS’
by weighting edges in ‘T’ according to the cosine similarity

scores computed using Lucene.

Figure 4: Example of application of spreading activation to
matrix PS.

CHI 2008 Proceedings · Activity-Based Prototyping and Software April 5-10, 2008 · Florence, Italy

1326

theories in which phenomena spread, and by information
foraging theory in particular. It calculates how widely the
spreading emanates. For PFIS, spreading activation calcu-
lates the likely spread of programmers to locations in
source code, which can be interpreted as the expectation
that a programmer trying to resolve a particular bug report
will navigate to those locations in the program.

Spreading activation takes an activation vector A, a scent
matrix PS, an entry vector E, and a scalar parameter α. The
parameter α scales PS by the portion of users who do not
follow a link. In the initial iteration, the activation vector
equals the entry vector. Activation is updated (spread) in
each iteration t as follows [3]:

A(t) : = α PS * A(t-1) + E

In each iteration, activation from the entry vector is spread
out to adjacent nodes, and activation present in any node is
spread to neighboring nodes according to the scent, i.e., the
edge weights in PS. In the final iteration, activation vector
A represents the activation of each node (package, class,
method, field) in our topology T. Normalizing A, we inter-
pret A as the probability of a hypothetical user visiting that
node in T. See Figure 4.

EXPERIMENT

Design, Participants, and Materials
We recruited 12 professional programmers from IBM. We
required that each had at least two years experience pro-
gramming Java, used Java for the majority of their software
development, were familiar with Eclipse and bug tracking
tools, and felt comfortable with searching, browsing, and
finding bugs in code for a 3-hour period of time.

We searched for a program that met several criteria: we
needed access to the source code, it needed to be written in
Java, and it needed to be editable and executable through
Eclipse, a standard Java IDE. We selected RSSOwl, an
open source news reader that is one of the most actively
maintained and downloaded projects hosted at Source-
forge.net. The popularity of newsreaders and the similarity
of its UI to email clients meant that our participants would
understand the functionality and interface after a brief in-
troduction, ensuring that our participants could begin using
and testing the program immediately.

RSSOwl (Figure 5) consists of three main panels: to the
left, users may select news feeds from their favorites, to the
upper right, users can review headlines. On selecting a
headline, the story appears in the lower right panel of the
application window.

Having decided upon the program, we also needed bug re-
ports for our participants to work on. Since we were inter-
ested in source code navigation and not the actual bug fixes,
we wanted to ensure that the issue could not be solved
within the duration of the session. We also decided that one
issue should be about fixing erroneous code and the other
about providing a missing feature. From these require-

ments, we selected two issues: 1458101: “HTML entities in
titles of atom items not decoded” and 1398345: “Remove
Feed Items Based on Age.” We will refer to the first as is-
sue B (“Bug”) and the second as issue MF (“Missing Fea-
ture”). Each participant worked on both issues, and we
counterbalanced the ordering of issues among subjects to
control for learning effects. The former involves finding
and fixing a bug, and the latter involves inserting missing
functionality, requiring the search for a hook.

The issues we assigned to developers were open issues in
RSSOwl. We considered looking at closed issues whose
solution we could examine, but this would have meant lo-
cating an older version of RSSOwl for participants to work
on, and would have required us to ensure that participants
would not find the solution accidentally by browsing the
web. Therefore, we decided that our participants would
work on open issues, cognizant of the risk that RSSOwl’s
own developers could close the issues during the study,
updating the web-available solution with the correct code in
the process. (Fortunately, this did not happen.)

Procedure
Upon their arrival, after participants filled out initial paper
work, we briefly described what RSSOwl is, and explained
to our participants that we wanted them to try to find and
possibly fix issues that we assigned to them. We then set up
the instant messenger so that participants could contact us
remotely. Then we excused ourselves from the room. We
observed each participant remotely for three hours.

We recorded electronic transcripts and video of each ses-
sion using Morae screen and event log capture software.

Figure 5. RSSOwl, an RSS/RDF/Atom news reader

CHI 2008 Proceedings · Activity-Based Prototyping and Software April 5-10, 2008 · Florence, Italy

1327

Participants had been instructed to think aloud, and were
reminded to do so if they fell silent for an extended period.
We archived the changes they made, if any. The electronic
transcripts, videos, and source code served as the data
sources we used in our analysis.

RESULTS
For each of the participants in each task, we analyzed the
video and tallied the frequency and duration of visits for
each of the class files. We will refer to these two metrics as
visits and time span, respectively.

We then ran the PFIS algorithm for each task, applying the
spreading activation algorithm over 100 iterations (at which
point activation had settled and varied little between itera-
tions), with an α of 1 to simulate users navigating within
source code. Spreading activation requires us to specify the
starting point of navigation (entry vector E). In our study,
we did not specify where programmers should start, so to
construct our entry vector, we simply recorded in which
classes or methods participants actually started. This gener-
ated a series of activation vectors describing the probable
number of programmers to have visited each location.

Although PFIS reasons at a finer granularity than classes,
we combined the methods’ results by class for uniformity
of comparison with other methods.

How well does PFIS model navigation compared with
historical program navigation by other humans?
We first compare PFIS’ ability to model any one program-
mer’s navigation to human wisdom, namely the actual
navigation patterns of all the other programmers in our
study.

First, we computed the Spearman correlation between the
“hold one out” aggregate program navigation among all but
one of the programmers to predict the remaining program-
mer’s navigation for each metric in each task. This collec-
tion of combined human judgments can be seen in Figures 6
and 7 as “Collective visits” and “Collective time span.” In
Figures 6 and 7, “Classes” represents the correlation be-
tween each programmer’s navigation and the “hold one
out” count of programmers who visited each class. Because
programmers may visit classes multiple times, “Classes”
differs from “Collective visits.”

Second, we computed the Spearman correlation between
each pair of programmers for each task (Issue B and MF)
and each metric (time span and visits). This comparison
shows how well any one programmer could predict another
programmer’s navigation, representing situations with a
low level of available human history, such as for new pro-
jects or very small teams. These results are summarized in
Figures 6 and 7 as “Pairwise visits” and “Pairwise time
span.”

Comparing the PFIS boxes in these figures to the “Collec-
tive” boxes shows that PFIS came reasonably close to ag-
gregated human judgments. Further, PFIS was significantly
better as a predictor of program navigation than a fellow

programmer (Pairwise boxes), on average. We determined
this using bootstrap resampling, which shows that the 95%
confidence interval of the difference between PFIS and the
pairwise correlation of programmers does not span zero for
each task and metric.

Previous tools (discussed earlier) have empirically shown
the effectiveness of historical program navigation data as
the basis for recommending which classes are relevant to an
issue. Our results suggest that (1) information foraging the-
ory may account for these tools’ success, (2) when there is
no historical data available, PFIS is a reasonable substitute,
and (3) when there is only a little historical data available,
PFIS may outperform these tools.

How well do PFIS and other models predict the places
in the source code to which programmers will navigate?
The PFIS model, like other information foraging work, in-
cludes the notions of both scent and topology. Therefore, to
consider whether scent or topology might work better alone
than in combination, we devised two additional models that
model scent only and topology only.

The scent-only model was the interword correlation model
of [17], which works at the granularity of classes. We chose
to include this model because of its basis in Pirolli’s infor-
mation foraging calculations of interword correlation [20]
and its early indications of success in predicting program-
mer navigation. As in Pirolli’s calculations, it weights terms
in documents according to the term-frequency inverse

Pairwise visits
Classes

Collective visits
PFIS

-.1 0 .1 .2 .3 .4 .5 .6

Is
su

e
B

Pairwise visits
Classes

Collective visits
PFIS

Spearman Correlation
-.1 0 .1 .2 .3 .4 .5 .6

Is
su

e
M

F

Figure 6. Correlation between each of the 12 participant’s

visits among classes and the respective model.

Pairwise timespan
Classes

Collective timespan
PFIS

-.1 0 .1 .2 .3 .4 .5 .6

Is
su

e
B

Pairwise timespan
Classes

Collective timespan
PFIS

Spearman Correlation
-.1 0 .1 .2 .3 .4 .5 .6

Is
su

e
M

F

Figure 7. Correlation between each of the 12 participant’s

time span among classes and the respective model.

CHI 2008 Proceedings · Activity-Based Prototyping and Software April 5-10, 2008 · Florence, Italy

1328

document frequency (TF-IDF) formula, commonly used in
information retrieval systems [1]. This model is equivalent
to the results returned by a standard (vector space model)
search engine.

The PFIS-Topology model uses spreading activation on the
topology aspect of PFIS only (in effect, replacing PS with T
in the spreading activation iteration formula). Topology, as
we have explained, is the collection of links. Since most
links are method calls, the topology is similar to a call
graph plus links to each method’s definition. We used this
model because many software tools are based on topologi-
cal information, and we wanted to see how such tools po-
tentially compare with new tools based on information for-
aging.

Table 1 shows the average correlations between each pro-
grammer’s navigation choices and these three models’ pre-
dictions (rows 1-3), with the aggregated human judgments
repeated for ease of comparison (row 4).

Particularly for Issue MF, the performance of the models
were quite similar. (Using bootstrap resampling, we deter-
mined that the 95% confidence interval of the difference
between each pair of models spans zero, indicating no sig-
nificant difference.)

We also determined that the difference between PFIS on
Issue B versus Issue MF (for each metric) was significant,
which raises a new question: are there fundamental differ-
ences in the ways programmers navigate when working on
solving a bug versus working on adding new features? We
will return to this issue in a later section.

Does PFIS account for all the class to class traversals
made by programmers?
In the previous sections, we examined whether information
foraging theory could model the set of users’ visits to
classes, by taking into account the relationships between
classes, methods and variables. We now consider the se-
quence of these visits by examining the “edges” from one
class to another traversed by our participants. Classes that
are visited one directly after another could indicate a rela-
tionship between these classes, and when present, we would
like to see if it is predicted by information foraging theory,
and if not to understand what might account for it.

Out of 37,056 (mathematically, this is 193 permute 2) pos-
sible directed edges between classes, our analysis produced

3,612 class-class pairings based on the topology of links,
leaving 33,444 not in the topology. Of the 3,612 in the to-
pology, 1,162 were predicted by PFIS, as shown in Figure
8. Thus, according to PFIS, for the maintenance tasks in our
study, only 3% of all possible class-class traversals were
potentially relevant.

Did PFIS pick the right 3%? It was pretty close for Issue B,
predicting 42 of the 61 pairs of classes (69%) that were
traversed more than once. Only 7 visited pairs were not
explained by either scent or topological relationships. For
issue MF, PFIS was not as stellar, but of the 103 pairs trav-
ersed more than once, it still predicted 33 (32%). However,
47 pairs were not explained by scent or topological rela-
tionships. These relationships are shown in Figure 9.

These results were borne out statistically (Table 2). For
Issue B, PFIS predicted edge traversals remarkably well—
almost as well as it predicted the allocation of time and vis-
its to classes (recall Table 1). However, it only weakly pre-
dicted edge traversals for Issue MF, also shown in Table 2.

We further investigated the pairings visited more than once
for each issue that were not in the topology, to determine
why the topology did not contain these edges. As shown in
Table 3, some of the edges for issue MF could not be ex-
plained by the topology because two participants each
added a class to the source code to implement the missing
feature. Some class-class pairings had words in common
even if they did not share any links between them (class-
class scent). For Issue MF, we noticed some traversals that
could be explained by indirect links. In such cases, one
class would contain a variable of an interface type, and the
other class would implement the interface. In some cases,
membership to a common package explained the relation-
ship between two classes (which did not fulfill the one-click
definition of “link”). The remaining edges were a collection

 Issue B Issue MF
time span 0.191 0.162 Interword correlation
visits 0.204 0.171
time span 0.221 0.194 PFIS-Topology
visits 0.221 0.185
time span 0.271 0.160 PFIS
visits 0.278 0.167
time span 0.281 0.167 Collective
visits 0.328 0.212

Table 1: Average correlation between each programmer’s
navigation and the predictions of each model.

33,444

1,162

2,450
33,444

1,162

2,450

Figure 8: Edges. (Top): Inner oval: edges predicted by PFIS.
Middle oval: edges in topology (only). Outer oval: edges not

in topology or PFIS.

33,437

12421,120

2,438

7

33,437

12421,120

2,438

7

33,397

1,129

2,427

23
47

33

33,397

1,129

2,427

23
47

33

Figure 9: (Left): Same as Figure 8, but from perspective of
Issue B; right rectangle highlights links visited more than
once for B. (Right): From perspective of Issue MF; bottom
rectangle highlights links visited more than once for MF.

CHI 2008 Proceedings · Activity-Based Prototyping and Software April 5-10, 2008 · Florence, Italy

1329

of other explanations, including use of search and switches
among multiple source code windows.

Back-links may be an important factor. Some edges in the
rows of Table 3 were traversed when programmers went
back to a class they had just come from, or cycled between
two classes; namely in 6 out of Issue B’s 32 edges that were
traversed more than 3 times, and 27 out of 54 such edges
for issue MF. Such back-links were not in the PFIS model
(and have not been modeled by web-oriented information
foraging models either), but these results show that they
should be considered for inclusion in such models.

A final point is that not all scent is textual. Information for-
aging theory as applied to the web has pointed this out, but
PFIS does not yet model it.

For example, programmers often derive hypotheses from
observing run-time behavior. A possible corroboration of
this notion of hypotheses’ interactions with information
foraging may be that many of the edge traversals through-
out the rows of Table 3 involved GUI classes. Thus, we
next consider hypotheses and scent.

Participants’ Hypotheses
Prior research into debugging suggests that programmers
form hypotheses about the reasons and places relevant to
bugs, and that much of debugging revolves around attempts
to confirm, refine, or refute those hypotheses [2, 14, 30].

Recall that PFIS performed better on issue B than on issue
MF. A key assumption behind the PFIS model is that, when
the issue being pursued starts with a bug report, the pro-
grammer forms hypotheses that linguistically relate to the
bug report. Implicit in this assumption is the premise that a
model can omit hypotheses and still be able to predict the
necessary places to navigate well enough to be useful.

We decided to probe this premise by investigating whether
programmers’ hypothesis formation played fundamentally
differing roles in the two issues. We investigated this ques-
tion via content analysis of four transcribed participant ses-
sions, two sessions for each issue. Two of the authors inde-
pendently coded each transcript, replaying the videos at the
same time to maintain context, coding the formation of an
entirely new hypothesis, and coding for expanding or revis-

ing an existing hypothesis. The two coders reached agree-
ment on over 90% of their codes.

These sessions revealed interesting differences in the tim-
ing, generality, and process of hypothesis formation for
Issue B versus Issue MF. For example, when working on
Issue B, participant 96s was able to formulate a specific and
concrete hypothesis about exactly what needs to change
within 5 minutes into the task. Participant 82 likewise
formed a very concrete hypothesis for Issue B, and even
more quickly. (Times are mm:ss)

Participant 96s (05:05): This is saying that there is
HTML in the thing that shows up in the headline part.

Participant 82s (01:45): These escape characters...
the apostrophes are not making it in ... Somehow we
want to have escaped XML because this is in CDATA.

In contrast, for Issue MF, the hypotheses were more open-
ended, possibly because there were multiple correct solu-
tions to the problem. For example, Participant 85s’s first
hypothesis, given in the first minute, was simply a broad
hypothesis about what he had to accomplish. It was 23
minutes into Issue MF, after the subject had investigated the
code and referred back to the bug report, until he provided a
hypothesis about how to actually address part of Issue MF:

Participant 85s (00:56): We want to remove the items
based on the unread age and based on the read age.

Participant 85s (23:21): Now we want to add the ex-
piration.

Participant 84s decided that it would be hard to develop a
useful hypothesis about Issue MF without a better under-
standing of RSSOwl, so after forming a general hypothesis
about “adding” at six minutes in, he changed his strategy,
deciding to experiment with the system before attempting to
refine the hypothesis. His experiments continued, without
further hypothesis verbalizations for 22 more minutes. At
that time he finally began to become form a concrete hy-
pothesis about a suitable “hook” for adding the feature.

Participant 84s (06:28): So what we are looking to
do is to add — I think what I’ll start doing is trying to
archive RSS feed entries after say some amount of
time and then I’ll make it increasingly more complex.

Participant 84s (28:55): When am I going to run this
archive feature? The answer would seem to be is this
something that is going to be run automatically? Yes.

Thus, hypothesis formation appears to be different in nature
between these two issues.

One possible cause may be the wording of the bug reports,
which are shown in Figure 10. Note that Issue B’s bug re-
port is fairly specific about symptoms and circumstances,
which could have enabled the early formation of concrete
hypotheses demonstrated by our participants. This could be
simply a matter of better wording and content in these par-
ticular reports, but we propose that it could be in part inher-

Edge traversals predicted by Issue B Issue MF
PFIS-Topology 0.477 0.18
PFIS 0.46 0.19
Table 2: Spearman correlation between edge visits and proxi-
mal scent, call graph relations. All correlations shown were

significant at p < 0.01.

Edges explained by Issue B Issue MF
Added class 0 11
Class-class scent 3 6
Indirect link not modeled 0 8
Membership to same package 3 10
Other 1 12

Table 3: Why are edges outside the topology?

CHI 2008 Proceedings · Activity-Based Prototyping and Software April 5-10, 2008 · Florence, Italy

1330

ent in the traditions of reporting these two types of software
issues. Reporting bugs often entails enumerating specific
circumstances gone wrong with the assumption that the
specifications are fairly well understood. In contrast, report-
ing the need for missing features emphasizes providing
reasonably complete specifications for the desired feature.
These differences are reflected in the bug reports in the
figure. They are also reflected in comments that were
posted to these bug reports. For Issue B, three of the four
comments related to the possible location of the bug. (The
fourth was about how easy/difficult the fix might be.) For
Issue MF, the three comments elaborated upon the specifi-
cations.
We have previously suggested that it may be possible to use
participants’ words typed into “search” tools as surrogates
for their hypotheses [17]. Eleven of our twelve participants
used search, and searching was at least somewhat involved
in the process of their work on their hypotheses.
Early concrete hypothesis formation for Issue B was appar-
ent in our participants’ search behaviors. They used search
more for Issue B (59 searches, versus 32 for Issue MF), and
what they searched for were low-level “how to” items on
the web (34% of their searches), and locations in the code
base (66%). An example of a “how to” web search was
participant 82s’s search for “converting strings to HTML
java”, and an example of a location search was his search
for “addListener” in the code base.
In Issue MF, our participants searched much less than in
Issue B—specifically, only 54% as much. The tasks were
varied in order, so learning effects did not account for this
difference. More to the point, the Issue MF searches were
almost all in the code base (94%), looking for a hook. For
example, Participant 85s’s only two searches were in the
code base, looking for “items.put” and “Date”.
These results suggest that there are (at least) two relation-
ships between hypotheses and search strings: searches in
attempting to form a concrete hypothesis, and searches to
pursue that concrete hypothesis after it is formed. For Issue
B, most of the searches were of the pursuit type (since con-

crete hypotheses were formed fairly quickly), whereas for
Issue MF, most of the searches were of the formation type,
and were used only about half as much as with Issue B.

DISCUSSION AND IMPLICATIONS
The ultimate goal of this work is to provide theoretical
grounding for tools to support software maintenance. The
results from our predictive model are consistent with a
number of descriptive theories of debugging [2, 16, 30], but
also add to the theoretical understanding of debugging by
providing a dynamic model. The model can be used in de-
scriptive, explanatory, and predictive manners.
The PFIS model’s performance shows that it already allows
us to provide independent evidence about the premises be-
hind current systems, such as Hipikat. It also allows us to
reason about new design possibilities. In the domain of web
navigation, information foraging and WUFIS have been
used as the basis for both automated usability evaluation
[4], and in browsing and navigation tools [19]. Similar ap-
plications of the theory could be developed for program
navigation.
For example, just as ScentTrails [19] has been used to suc-
cessfully speed up web navigation by highlighting hyper-
links to indicate paths to search results, our results suggest
that source code navigation could be enhanced by highlight-
ing links in class files with high scent for the bug report
under consideration. Scent-based indicators could also be
added to existing software tools based on other ways of
discovering relationships between source code, such as de-
veloper navigation and action histories [27, 28, 31, 32], or
structural or lexical relationships [5, 7, 8]. Scent indicators
may also enhance the use of call graphs and program slices
during maintenance, by indicating an additional relationship
between parts of source code. Fault localization tools,
which use multiple information sources to make a best
guess about the location of a bug, may also benefit by using
scent as an additional factor.
Information foraging theories have also been used as the
basis for web site usability evaluation tools. In an analogous
fashion, the PFIS model could be used for usability analysis
of bug reports. More helpful bug reports may get written if
scent-based feedback is provided to bug report authors re-
garding how well their report is narrowing the possible set
of places the bug might be located. PFIS could also be used
to evaluate proximal scent strength within source code it-
self, which could ultimately be used by programmers to
improve their naming and commenting practices.
The above design suggestions are speculative, but they
demonstrate how PFIS, as a predictive model, has the po-
tential to both inform and evaluate tool development, as has
been the case for information foraging in web navigation.

CONCLUSION
In this paper we presented PFIS (Programmer Flow by In-
formation Scent), an information foraging model of pro-
grammers’ navigation during maintenance, and evaluated it
empirically. The main results of the evaluation were that:

HTML entities in titles of atom items not decoded
In an atom feed such as crookedtimber.org/feed/atom/ you
can find both the post titles and the post contents ex-
pressed as escaped-HTML. The post contents (including
entities) are rendered correctly by RSSOwl, but the post
titles that contain HTML entities are not. The entities, like
’ are not expanded by RSSOwl in post titles. I have
attached a snapshot of that feed at this point in time.

Remove Feed Items Based on Age
This is based on the assumption that the ability to archive
feeds is available. Create an option to delete feed items
after a certain amount of time has passed. Kind of like a
rule saying ‘Delete all feed items that are 3 months old’.

Figure 10: Snapshot of the bug reports’ contents. (Top): Issue
B. (Bottom): Issue MF.

CHI 2008 Proceedings · Activity-Based Prototyping and Software April 5-10, 2008 · Florence, Italy

1331

• The PFIS model’s performance was close to aggregated
human decisions and better than individual fellow pro-
grammers’ decisions as to where to navigate.

• PFIS missed only a small fraction of the 61 traversals
that occurred more than once for Issue B. However, for
Issue MF, it missed more of them. Many of the edges
PFIS missed were topological relationships not usually
considered by information foraging algorithms, such as
back-links, and scent relationships not in the topology.
These provide opportunities for future improvements.

• Our results suggest that the difference in prediction lev-
els for the bug versus new feature may be due in part to
differences in how information foraging related to hy-
potheses. We conjecture that this is due to inherent dif-
ferences between the reporting of bugs versus feature
requests, with the former tending to describe scent-
carrying aspects such as circumstances and locations,
but the latter describing specifications, which may have
less scent.

Most important, our results suggest that information forag-
ing’s ability to predict programmer navigation during main-
tenance is indistinguishable from aggregated historical pro-
gram navigation data. This in turn suggests that information
foraging can provide a theoretical account of program navi-
gation in software maintenance.

ACKNOWLEDGMENTS
This study was supported in part by IBM Research, by the
EUSES Consortium via NSF ITR-0325273, and by an IBM
International Faculty Award. This paper benefited greatly
from the comments of the reviewers and the meta-reviewer.

REFERENCES
1. Baeza-Yates, R., Ribeiro-Neto, B. Modern Information Re-

trieval, Addison Wesley Longman (1999).
2. Brooks, R. Towards a theory of the cognitive processes in

computing programming, Int. J. Human-Computer Studies 51
(1999), 197-211.

3. Chi, E., Pirolli, P, Chen, K. and Pitkow, J, Using information
scent to model user information needs and actions on the
web. In Proc. CHI 2001, ACM Press (2001).

4. Chi, E., Rosien, A., Supattanasiri, G., Williams, A., Royer,
C., Chow, C., Robles, E., Dalal, B., Chen, J., Cousins, S. The
Bloodhound project: Automating discovery of web usability
issues using the InfoScent simulator. In Proc. CHI 2003,
ACM Press (2003).

5. Cubranic, D., Murphy, G., Singer, J., and Booth, K., Hipikat:
A project memory for software development, IEEE Trans.
Soft. Eng. 31, 6 (2005), 446-465.

6. Cutting, D. Lucene, http://lucene.apache.org/java/docs/
7. DeLine, R., Czerwinski, M. and Robertson, G., Easing pro-

gram comprehension by sharing navigation data, In Proc.
VLHCC, IEEE (2005), 241-248.

8. DeLine, R., Khella, A., Czerwinski, M., and Robertson, G.
Towards understanding programs through wear-based filter-
ing, In Proc. SoftVis, ACM Press (2005), 183-192.

9. Eclipse Documentation: JDT Plug-in Developer Guide,
http://help.eclipse.org/help32/index.jsp?topic=/org.eclipse.jdt
.doc.isv/reference/api/org/eclipse/jdt/core/dom/package-
summary.html

10. Hill, W., Hollan, J., Wroblewski, D., McCandless, T. Edit

wear and read wear, In Proc. CHI 1992, ACM Press (1992).
11. JUNG: Java Universal Network/Graph Framework,

http://jung.sourceforge.net/
12. Kersten, M., Murphy, G. Mylar: A degree of interest model

for IDEs, In Proc. AOSD (2005).
13. Ko, A., Aung, H., and Myers, B. Eliciting design require-

ments for maintenance-oriented IDEs: a detailed study of cor-
rective and perfective maintenance tasks, In Proc. ICSE
2005, IEEE (2005), 126-135.

14. Ko, A., Myers, B., A framework and methodology for study-
ing the causes of software errors in programming systems, J.
Visual Langs. Computing 16, 1-2, (2005).

15. Ko, A., Myers, B., and Chau, D. A linguistic analysis of how
people describe software problems, In Proc. VLHCC, IEEE
(2006), 127-136.

16. Ko, A., Myers, B., Coblenz, M., and Aung, H. An explora-
tory study of how developers seek, relate, and collect relevant
information during software maintenance tasks, IEEE Trans.
Soft. Eng. 32, 12 (2006), 971 - 987.

17. Lawrance, J., Bellamy, R., Burnett, M. Scents in programs:
Does information foraging theory apply to program mainte-
nance? In Proc VLHCC, IEEE (2007).

18. Nielsen, J. Information foraging: Why Google makes people
leave your site faster http://www.useit.com/alertbox/
20030630.html. (June 30, 2003.)

19. Olston, C. and Chi, E., ScentTrails: Integrating browsing and
searching on the web, ACM Trans. Computer-Human Inter-
action 10, 3 (2003), 177-197.

20. Pirolli, P. Computational models of information scent-
following in a very large browsable text collection. In Proc.
CHI 1997, ACM Press (1997), 3-10.

21. Pirolli, P. and Card, S. Information foraging, Psychology
Review 106, 4, (1999), 643-675.

22. Pirolli, P., and Fu, W. SNIF-ACT: A model of information
foraging on the World Wide Web. Lecture Notes in Com-
puter Science 2702, Springer (2003), 45-54.

23. Pirolli, P., Fu, W., Chi, E. and Farahat, A., Information scent
and web navigation: Theory, models and automated usability
evaluation. In Proc. HCI International, Erlbaum (2005).

24. Robillard, M., Coelho, W., and Murphy, G. How effective
developers investigate source code: An exploratory study,
IEEE Trans. Soft. Eng. 30, 12 (2004), 889-903.

25. Schneider, K., Gutwin, C., Penner, R., and Paquette, D. Min-
ing a software developer’s local interaction history, In Proc.
Intl. Wkshp Mining Software Repositories, (2004).

26. Schummer, T., Lost and found in software space, In Proc.
HICSS 2001.

27. Shirabad, J., Lethbridge, T., Matwin, S. Mining the mainte-
nance history of a legacy system, In Proc. ICSM, IEEE
(2003).

28. Singer, J., Elves, R., Storey, M. NavTracks: Supporting navi-
gation in software maintenance, In Proc. ICSM, IEEE (2005).

29. Spool, J., Profetti, C., and Britain, D., Designing for the scent
of information, User Interface Eng. (2004).

30. Vans, A. and von Mayrhauser, A., Program understanding
behavior during corrective maintenance of large-scale soft-
ware, Int’l J. Human-Computer Studies 51(1), 1999.

31. Ying, A., Murphy, G., Ng, R. and Chu-Carroll, M. Predicting
source code changes by mining change history, IEEE Trans.
Software Engineering 30, 2004, 574-586.

32. Zimmermann, T., Weissgerber, P., Diehl, S., and Zeller, A.
Mining version histories to guide software changes, In Proc.
ICSE, IEEE, (2004).

CHI 2008 Proceedings · Activity-Based Prototyping and Software April 5-10, 2008 · Florence, Italy

1332

