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ABSTRACT 
In recent years, the software engineering community has 
begun to study program navigation and tools to support it. 
Some of these navigation tools are very useful, but they 
lack a theoretical basis that could reduce the need for ad 
hoc tool building approaches by explaining what is funda-
mentally necessary in such tools. In this paper, we present 
PFIS (Programmer Flow by Information Scent), a model 
and algorithm of programmer navigation during software 
maintenance. We also describe an experimental study of 
expert programmers debugging real bugs described in real 
bug reports for a real Java application. We found that PFIS’ 
performance was close to aggregated human decisions as to 
where to navigate, and was significantly better than indi-
vidual programmers’ decisions.  
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INTRODUCTION 
Is navigating code like navigating the web? Do program-
mers navigate source code in search of a bug in the same 
way that people navigate the web in search of particular 
information? Can the behavior of programmers navigating 
source code be described using the same theories and mod-
els that have been used to describe web navigation?  

In software maintenance, code navigation is a central task. 
The importance of navigation to programming tasks such as 
maintenance and debugging is beginning to become recog-
nized [7, 15]. One study showed that programmers spend 
35% of their on-line time navigating code [13]. Several 
research efforts, mostly in the software engineering com-

munity, have begun research to try to solve this problem [5, 
7, 16, 24, 28]. The research falls mainly into two categories: 
development of new tools without a theoretical basis, and 
derivation of new descriptive theories ground-up from data. 

However, we believe that an existing theory, namely infor-
mation foraging theory [21], can improve upon both of 
these approaches. In particular, we propose that information 
foraging theory can provide the foundations needed for tool 
development. This theory is more attractive than building 
new theories particular to navigation, because it has been 
empirically shown to be a good predictive theory in its own 
domain (namely, web browsing). Thus, it has mature roots, 
and in that domain it has become widely accepted and es-
tablished as a useful basis for tool development. We there-
fore decided to investigate how information foraging theory 
might model programmers’ navigation behavior in debug-
ging and maintenance.  

In this paper, we present PFIS (Programmer Flow by In-
formation Scent), a model and accompanying algorithm to 
predict programmers’ dynamic navigation behavior during 
program maintenance tasks. Information foraging theory 
uses the concept of scent to determine where someone will 
go when searching for information related to their goal. We 
believe that programmers may be information foragers 
when debugging, because research has shown that when 
debugging, programmers create hypotheses and then search 
for information to verify (or refute) these hypotheses. Fur-
thermore, we conjecture that such hypotheses are linguisti-
cally related to the words in the bug reports. According to 
these assumptions, the bug report defines the programmer’s 
goal and the scent they are seeking.  

As with information foraging models that have been used to 
model web behavior, the PFIS model takes into account 
both the source code’s topology (analogous to links on web 
pages) and its “scent.” Using these concepts, PFIS predicts 
that programmers will visit the source code with the highest 
scent in relation to the bug report. The PFIS algorithm 
builds on the WUFIS (Web User Flow by Information 
Scent) algorithm [3], adapting and extending the approach 
used in WUFIS to model programmer navigation during 
software maintenance.  

We also present an experiment that investigates the extent 
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PFIS can model the places to which programmers navigate 
to during two software maintenance tasks. We compare the 
PFIS results to competing possible predictors of where 
these programmers would navigate: a model based on word 
“scent” without making use of topology, a model based on 
topology without scent, and other programmers’ navigation 
patterns both pairwise and aggregated. We finally consider 
elements of program navigation not modeled by our infor-
mation foraging model, and their relationships with infor-
mation foraging.  

BACKGROUND AND RELATED WORK 
Information Foraging 
Information foraging theory emerged from the PARC labs 
in the mid-90’s, led by Pirolli and Card [21]. Inspired by 
appeals in the psychological literature for ecological ac-
counts of contextually dependent human behaviors, infor-
mation foraging theory offered a new perspective for those 
attempting to develop theoretical accounts of HCI that 
could be applied to tool design. Ecological theories contrast 
with information processing theories such as GOMS, that at 
the time did not account for effects of context. 

Information foraging theory is based on optimal foraging 
theory, a theory of how predators and prey behave in the 
wild. In the domain of information technology, the predator 
is the person in need of information and the prey is the in-
formation itself. Using concepts such as “patch,” “diet” and 
“scent,” information foraging theory describes the most 
likely pages (patches) a web-site user will visit in pursuit of 
their information need (prey), by clicking links containing 
words that are a close match to (smell like) their informa-
tion need. The scent of information comes from the linguis-
tic relationships between words expressing an information 
need and words contained in links to web pages. The preda-
tor/prey model, when translated to the information technol-
ogy domain, has been shown to mathematically model 
which web pages human information foragers select on the 
web [20], and therefore has become useful as a practical 
tool for web site design and evaluation [4, 18, 23, 29].  

The work described in this paper builds on the WUFIS al-
gorithm (Web User Flow by Information Scent) [3, 4], an 
empirically validated algorithm approximating information 
foraging theory as defined by Pirolli et al’s SNIF-ACT 
model [22]. The advantage of WUFIS over SNIF-ACT is 
that WUFIS can be readily applied in new contexts, 
whereas SNIF-ACT is a fully functioning cognitive model, 
and must be customized for each information foraging con-
text being studied. The WUFIS algorithm encodes link 
quality as a function of its match to the users’ information 
need. Someone is more likely to select the link on a page 
that appears to have the highest probability of eventually 
leading them to the page best matching their information 
need. Flow refers to users surfing through the web site 
moving from page to page by clicking on the highest scent 
links on the page, and is modeled using spreading activation 
over the link topology. Scent is computed as a function of 
the term frequency of words in a query and the term fre-

quency of words in or near a link. The usability of a site for 
a particular query is determined by running WUFIS to ob-
tain the probable number of users that would reach each 
page by following cues that best match the query.  

This work in this paper also builds upon the work of [17]. 
Programmers debugging code may be information foragers 
in that they form hypotheses and then hunt for information 
to verify these hypotheses. A study of programmers at-
tempting to fix bugs found an interword’ correlation be-
tween the bug report and the set of classes visited by the 
programmers [17]. That work presented evidence based on 
a static view of these interword’ correlations, but did not 
present a model per se. This paper, in contrast, contributes a 
model of information foraging, together with an algorithm, 
that takes into account programmers’ dynamic program 
navigation behavior. 

Program Navigation and Maintenance 
In recent years, the software engineering community has 
begun to study program navigation and tools to support it. 
For example, Robillard et al. studied navigation qualita-
tively with a controlled experiment of 5 graduate student 
developers [24], from which they derived a descriptive the-
ory. Their theory focuses on the importance of methodical 
investigation; it does not suggest information foraging prin-
ciples, but it is consistent with them. However, as they 
point out, elements of their experimental design may have 
encouraged methodical investigation. Fundamental differ-
ences from our work are that our use of theory focuses on 
the potential cause of methodical investigation (namely, 
information foraging) rather than on its presence and effect, 
our study does not create new theories but rather investi-
gates the applicability of existing theory, and our theory is 
intended to be predictive rather than simply descriptive. 
In Ko et al.’s investigation of developer behavior during 
software maintenance, the participants—student developers 
working in Eclipse with 9 source files—spent 35% of their 
time navigating source code [13]. Their surprising result 
made clear the importance of trying to understand how pro-
grammers go about navigating, and how to help them save 
time while doing so. This finding led to the development of 
a descriptive model of program understanding [16], which 
proposes that the cues (e.g., identifier names, comments, 
and documentation) in an environment are central to search-
ing, relating, and navigating code in software maintenance 
and debugging. Although they did not investigate scent per 
se, their model is philosophically similar to information 
foraging theory.  
DeLine et al. [8] conducted empirical work into problems 
arising in software developers’ navigations through unfa-
miliar code. Their work turned up two major problems: 
developers needed to scan a lot of the source code to find 
the important pieces (echoing the finding of [13]), and they 
tended to get lost while exploring. These results inspired the 
idea to combine collaborative filtering and computational 
“wear” [10] from users’ interaction histories into a concept 
they call “wear-based filtering”.  
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A number of software engineering tools have begun to be 
developed that are also based on concepts of “togetherness” 
as defined by developer navigation/editing actions. Some of 
these approaches harvest simultaneous change information 
from source version control systems such as CVS, to obtain 
this type of information (e.g., [27, 31, 32] and others har-
vest togetherness directly from developer behavior logs 
(e.g., [7, 12, 25, 26, 28]). A system that is particularly per-
tinent is Hipikat [5] which remembers paths traversed by 
earlier members of a team, and uses hand-crafted textual 
similarity to support search for code-related artifacts. 
Evaluations showed that newcomers using Hipikat achieve 
results comparable in quality and correctness to those of 
more experienced team members.  

These tools and analyses have not been grounded in theory, 
but their empirical success shows that they are useful. Our 
premise is that the information foraging model may explain 
why they are useful, and may usefully guide the develop-
ment of future program maintenance and debugging tools.   

THE PFIS ALGORITHM  
To examine whether information foraging theory can pre-
dict the classes and methods programmers will visit, and the 
paths they will take as they navigate through code in search 
of relevant places to fix bugs, we created PFIS. PFIS is 
based upon the web user flow by information scent 
(WUFIS) algorithm [3], which combines information re-
trieval techniques with spreading activation. As WUFIS 
does for web path following, PFIS calculates the probability 
that a programmer will follow a particular “link” from one 
class or method in the source code to another, given a spe-
cific information need.  

Consider the notion of links in the domain of program navi-
gation. According to information foraging theory, the path 
an information forager will take is determined by the scent 
of proximal cues of a particular link in relation to their in-
formation need. In WUFIS, hyperlinks serve as the way 
information foragers navigate between pages, and thus the 
words in or near hyperlinks serve as proximal cues an in-
formation forager can use to choose among which links to 
follow in pursuit of a goal. In PFIS, we define a link to be 
any means a programmer can use to navigate directly in one 
click to a specific place in source code, excluding scrolling 
between methods within a class or browsing among classes 
within a package. Thus, the definition of links takes into 
account the features of the programming environment. As 
in hyperlinks, links in programs have proximal cues associ-
ated with them: for example, a link from a method defini-
tion to a method invocation includes the name of the object 
of the invoked method, the name of the invoked method, 
and the names of the variables passed in as parameters to 
the invoked method. 

For example, the Eclipse Package Explorer and Outline 
views allow programmers to navigate from packages to 
classes to fields and methods (one click each). Eclipse also 
allows programmers to open definitions and search for ref-

erences to a method, variable, or a type in one click. There-
fore, packages link to member classes, classes link to their 
fields and methods, methods link to the methods they in-
voke, and variables link to their type.  

Due to the many one-click links, program navigation has 
two fundamental differences from web page navigation. 
First, what counts as a link is well-defined in a web site, 
whereas every identifier in a program may be (and is, in 
Eclipse) associated with a link to some definition or use. 
Second, source code has a much denser “link” topology 
than web pages, so there are many more ways to navigate to 
the same place. Such differences meant that, to extend the 
ideas of WUFIS to program navigation required defining 
the notion of links in source code, finding ways to process 
them, and defining the terms in and near a link that should 
be used and how to compute the scent of a link.  

Another difference between PFIS and WUFIS is that PFIS 
is necessarily more “real world” than WUFIS. Some as-
sumptions/controls that simplify the problem domain were 
made when developing WUFIS into the Bloodhound usabil-
ity service [4], but they are not viable for the domain of 
program navigation. This implementation is an important 
point of comparison for the work presented here, because it 
was used in a study validating the predictions made by the 
WUFIS algorithm.  

These simplifying assumptions/controls were (1) to disal-
low the use of search, which is not a reasonable limitation 
to place on a programmer attempting to maintain software 
(in our study programmers could choose to go anywhere 
once they had looked at the bug report); (2) to have only 
one web page open at a time (in our study programmers 
could keep class files open in tabbed panes); (3) to give 
pages that did not have any links in them a link back to the 
starting page, which we could not do since we wanted to 
use PFIS on real-world software without modifying it; and 
(4) to remove the scent for links on the desired target 
document. This latter simplification was based on the as-
sumption that people stopped searching when they reached 
the target and hence would not select any of the links on a 
target page. We cannot assume a target destination, because 
there is often no one “correct” target for a code mainte-
nance task.  

PFIS is summarized in Figure 1. We explain how each step 
is accomplished next. 

Central to WUFIS is a description of the link topology of 
the web site, describing each link in terms of which page it 
is on, and which page it points to. For example, Figure 2 
shows on the left four nodes, and the links between them. In 
WUFIS, the nodes are web pages; in PFIS the nodes are 
anything that is the destination of a link, e.g., method defi-
nitions, method invocations, variable definitions, etc. The 
link topology is described by the matrix on the right. For 
step 1 of the PFIS algorithm, to create the link topology of 
source code, we created an Eclipse JDT plugin [9] to trav-
erse each class and method in each compilation unit, and 
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used the Java Universal Network/Graph Framework [11] to 
construct the link topology (adjacency matrix) T, 
which gives us the beginning (i) and end points (j) for each 
link that a programmer can follow.  

Steps 2 and 3 determine the proximal scent of each link 
relative to the bug report (Figure 3). Proximal scent is the 
information foraging term referring to “scent” near the link. 
For step 2 of PFIS, we developed a special tokenizer for 
words in cues, so that CamelCase identifiers (e.g., 
“NewsItem.getSafeXMLFeedURL()”) would be split into 
their constituent words (“news item get safe xml feed url”), 
and also employed a standard stemming algorithm on the 
constituent words.  

For step 3 of PFIS, the scent is determined by the similarity 
of words in the bug report to the text that labels the link and 
in close proximity to the link. We used Lucene [6], an 
open-source search engine API to index the proximal cues 
(the text) associated with each link. Lucene uses TF-IDF 
[1], a technique commonly used in information retrieval to 
weight the importance of words in documents. For our pur-
poses, we treated the bug report as the query, and the 
proximal cues of each link as a document. Lucene deter-
mined the cosine similarity of each link in relation to the 
bug report to determine the scent of each link. We used 
these results as weights for the edges in T, producing a 
proximal scent matrix PS.  

In step 4, PFIS normalizes PS so that each column sums to 
1, thus producing a column-stochastic matrix. In effect, 
each column contains the probability that a programmer 

will follow a link from one location to another. Thus, at the 
end of step 4, the proximal scent relative to the bug report 
has been calculated, reflecting the information foraging 
premise that links in the source with proximal cues close to 
the important words in the bug report will smell more 
strongly of the bug, and are thus more likely to be followed. 

Steps 5, 6 and 7 simulate programmers navigating through 
the source code, following links based on scent. Spreading 
activation is an iterative algorithm used widely by HCI 

Algorithm PFIS (Programmer Flow by Information Scent) 
Given: Bug report, body of source code 
Returns: A vector containing for each package, class, 
method, and variable, the probability that a programmer 
will visit that area of source code given the bug report.  

Step 1. Determine link topology of source code and store 
them in matrix T. 

Step 2. Determine set of proximal cues around each link. 
Step 3. Determine proximal scent of each link to the bug 

report, and store the resulting similarity scores in ma-
trix PS. 

Step 4. Normalize matrix PS so that each column sums to 
1.00 (i.e., generate a column-stochastic matrix). 

Step 5. Define the starting place (class or method) for the 
spreading activation, and create an entry vector E with 
the starting location given a 1. 

Step 6. Calculate the probability of programmers going 
from the starting location to other documents by mul-
tiplying the entry vector E=A(1) by PS, to create an 
activation vector A(2). 

Step 7. Repeat step 6 to simulate programmers traversing 
through the link topology. The final activation vector 
A(n), when normalized, contains for each location the 
expected probability that a programmer will visit that 
location given the bug report. 

Figure 1: The PFIS algorithm. 

 
Figure 2: Link topology (adjacency) matrix ‘T’ 

 
 

 
Figure 3: Create the normalized proximal scent matrix ‘PS’ 
by weighting edges in ‘T’ according to the cosine similarity 

scores computed using Lucene. 
 

 
 

Figure 4: Example of application of spreading activation to 
matrix PS. 
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theories in which phenomena spread, and by information 
foraging theory in particular. It calculates how widely the 
spreading emanates. For PFIS, spreading activation calcu-
lates the likely spread of programmers to locations in 
source code, which can be interpreted as the expectation 
that a programmer trying to resolve a particular bug report 
will navigate to those locations in the program. 

Spreading activation takes an activation vector A, a scent 
matrix PS, an entry vector E, and a scalar parameter α. The 
parameter α scales PS by the portion of users who do not 
follow a link. In the initial iteration, the activation vector 
equals the entry vector. Activation is updated (spread) in 
each iteration t as follows [3]: 

A(t) : =  α PS * A(t-1) + E 

In each iteration, activation from the entry vector is spread 
out to adjacent nodes, and activation present in any node is 
spread to neighboring nodes according to the scent, i.e., the 
edge weights in PS. In the final iteration, activation vector 
A represents the activation of each node (package, class, 
method, field) in our topology T. Normalizing A, we inter-
pret A as the probability of a hypothetical user visiting that 
node in T. See Figure 4. 

EXPERIMENT  

Design, Participants, and Materials 
We recruited 12 professional programmers from IBM. We 
required that each had at least two years experience pro-
gramming Java, used Java for the majority of their software 
development, were familiar with Eclipse and bug tracking 
tools, and felt comfortable with searching, browsing, and 
finding bugs in code for a 3-hour period of time. 

We searched for a program that met several criteria: we 
needed access to the source code, it needed to be written in 
Java, and it needed to be editable and executable through 
Eclipse, a standard Java IDE. We selected RSSOwl, an 
open source news reader that is one of the most actively 
maintained and downloaded projects hosted at Source-
forge.net. The popularity of newsreaders and the similarity 
of its UI to email clients meant that our participants would 
understand the functionality and interface after a brief in-
troduction, ensuring that our participants could begin using 
and testing the program immediately.  

RSSOwl (Figure 5) consists of three main panels: to the 
left, users may select news feeds from their favorites, to the 
upper right, users can review headlines. On selecting a 
headline, the story appears in the lower right panel of the 
application window. 

Having decided upon the program, we also needed bug re-
ports for our participants to work on. Since we were inter-
ested in source code navigation and not the actual bug fixes, 
we wanted to ensure that the issue could not be solved 
within the duration of the session. We also decided that one 
issue should be about fixing erroneous code and the other 
about providing a missing feature. From these require-

ments, we selected two issues: 1458101: “HTML entities in 
titles of atom items not decoded” and 1398345: “Remove 
Feed Items Based on Age.” We will refer to the first as is-
sue B (“Bug”) and the second as issue MF (“Missing Fea-
ture”). Each participant worked on both issues, and we 
counterbalanced the ordering of issues among subjects to 
control for learning effects. The former involves finding 
and fixing a bug, and the latter involves inserting missing 
functionality, requiring the search for a hook. 

The issues we assigned to developers were open issues in 
RSSOwl. We considered looking at closed issues whose 
solution we could examine, but this would have meant lo-
cating an older version of RSSOwl for participants to work 
on, and would have required us to ensure that participants 
would not find the solution accidentally by browsing the 
web. Therefore, we decided that our participants would 
work on open issues, cognizant of the risk that RSSOwl’s 
own developers could close the issues during the study, 
updating the web-available solution with the correct code in 
the process. (Fortunately, this did not happen.) 

Procedure 
Upon their arrival, after participants filled out initial paper 
work, we briefly described what RSSOwl is, and explained 
to our participants that we wanted them to try to find and 
possibly fix issues that we assigned to them. We then set up 
the instant messenger so that participants could contact us 
remotely. Then we excused ourselves from the room. We 
observed each participant remotely for three hours.  

We recorded electronic transcripts and video of each ses-
sion using Morae screen and event log capture software. 

 
Figure 5. RSSOwl, an RSS/RDF/Atom news reader 
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Participants had been instructed to think aloud, and were 
reminded to do so if they fell silent for an extended period. 
We archived the changes they made, if any. The electronic 
transcripts, videos, and source code served as the data 
sources we used in our analysis. 

RESULTS 
For each of the participants in each task, we analyzed the 
video and tallied the frequency and duration of visits for 
each of the class files. We will refer to these two metrics as 
visits and time span, respectively. 

We then ran the PFIS algorithm for each task, applying the 
spreading activation algorithm over 100 iterations (at which 
point activation had settled and varied little between itera-
tions), with an α of 1 to simulate users navigating within 
source code. Spreading activation requires us to specify the 
starting point of navigation (entry vector E). In our study, 
we did not specify where programmers should start, so to 
construct our entry vector, we simply recorded in which 
classes or methods participants actually started. This gener-
ated a series of activation vectors describing the probable 
number of programmers to have visited each location.  

Although PFIS reasons at a finer granularity than classes, 
we combined the methods’ results by class for uniformity 
of comparison with other methods. 

How well does PFIS model navigation compared with 
historical program navigation by other humans? 
We first compare PFIS’ ability to model any one program-
mer’s navigation to human wisdom, namely the actual 
navigation patterns of all the other programmers in our 
study.  

First, we computed the Spearman correlation between the 
“hold one out” aggregate program navigation among all but 
one of the programmers to predict the remaining program-
mer’s navigation for each metric in each task. This collec-
tion of combined human judgments can be seen in Figures 6 
and 7 as “Collective visits” and “Collective time span.” In 
Figures 6 and 7, “Classes” represents the correlation be-
tween each programmer’s navigation and the “hold one 
out” count of programmers who visited each class. Because 
programmers may visit classes multiple times, “Classes” 
differs from “Collective visits.”  

Second, we computed the Spearman correlation between 
each pair of programmers for each task (Issue B and MF) 
and each metric (time span and visits). This comparison 
shows how well any one programmer could predict another 
programmer’s navigation, representing situations with a 
low level of available human history, such as for new pro-
jects or very small teams. These results are summarized in 
Figures 6 and 7 as “Pairwise visits” and “Pairwise time 
span.” 

Comparing the PFIS boxes in these figures to the “Collec-
tive” boxes shows that PFIS came reasonably close to ag-
gregated human judgments. Further, PFIS was significantly 
better as a predictor of program navigation than a fellow 

programmer (Pairwise boxes), on average. We determined 
this using bootstrap resampling, which shows that the 95% 
confidence interval of the difference between PFIS and the 
pairwise correlation of programmers does not span zero for 
each task and metric. 

Previous tools (discussed earlier) have empirically shown 
the effectiveness of historical program navigation data as 
the basis for recommending which classes are relevant to an 
issue. Our results suggest that (1) information foraging the-
ory may account for these tools’ success, (2) when there is 
no historical data available, PFIS is a reasonable substitute, 
and (3) when there is only a little historical data available, 
PFIS may outperform these tools.  

How well do PFIS and other models predict the places 
in the source code to which programmers will navigate? 
The PFIS model, like other information foraging work, in-
cludes the notions of both scent and topology. Therefore, to 
consider whether scent or topology might work better alone 
than in combination, we devised two additional models that 
model scent only and topology only. 

The scent-only model was the interword correlation model 
of [17], which works at the granularity of classes. We chose 
to include this model because of its basis in Pirolli’s infor-
mation foraging calculations of interword correlation [20] 
and its early indications of success in predicting program-
mer navigation. As in Pirolli’s calculations, it weights terms 
in documents according to the term-frequency inverse 

Pairwise visits
Classes

Collective visits
PFIS

-.1 0 .1 .2 .3 .4 .5 .6

Is
su

e 
B

Pairwise visits
Classes

Collective visits
PFIS

Spearman Correlation
-.1 0 .1 .2 .3 .4 .5 .6

Is
su

e 
M

F

 
Figure 6. Correlation between each of the 12 participant’s 

visits among classes and the respective model. 
 

Pairwise timespan
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Collective timespan
PFIS
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Pairwise timespan
Classes

Collective timespan
PFIS

Spearman Correlation
-.1 0 .1 .2 .3 .4 .5 .6
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su

e 
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Figure 7. Correlation between each of the 12 participant’s 

time span among classes and the respective model.  
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document frequency (TF-IDF) formula, commonly used in 
information retrieval systems [1]. This model is equivalent 
to the results returned by a standard (vector space model) 
search engine.  

The PFIS-Topology model uses spreading activation on the 
topology aspect of PFIS only (in effect, replacing PS with T 
in the spreading activation iteration formula). Topology, as 
we have explained, is the collection of links. Since most 
links are method calls, the topology is similar to a call 
graph plus links to each method’s definition. We used this 
model because many software tools are based on topologi-
cal information, and we wanted to see how such tools po-
tentially compare with new tools based on information for-
aging. 

Table 1 shows the average correlations between each pro-
grammer’s navigation choices and these three models’ pre-
dictions (rows 1-3), with the aggregated human judgments 
repeated for ease of comparison (row 4). 

Particularly for Issue MF, the performance of the models 
were quite similar. (Using bootstrap resampling, we deter-
mined that the 95% confidence interval of the difference 
between each pair of models spans zero, indicating no sig-
nificant difference.) 

We also determined that the difference between PFIS on 
Issue B versus Issue MF (for each metric) was significant, 
which raises a new question: are there fundamental differ-
ences in the ways programmers navigate when working on 
solving a bug versus working on adding new features? We 
will return to this issue in a later section. 

Does PFIS account for all the class to class traversals 
made by programmers? 
In the previous sections, we examined whether information 
foraging theory could model the set of users’ visits to 
classes, by taking into account the relationships between 
classes, methods and variables. We now consider the se-
quence of these visits by examining the “edges” from one 
class to another traversed by our participants. Classes that 
are visited one directly after another could indicate a rela-
tionship between these classes, and when present, we would 
like to see if it is predicted by information foraging theory, 
and if not to understand what might account for it. 

Out of 37,056 (mathematically, this is 193 permute 2) pos-
sible directed edges between classes, our analysis produced 

3,612 class-class pairings based on the topology of links, 
leaving 33,444 not in the topology. Of the 3,612 in the to-
pology, 1,162 were predicted by PFIS, as shown in Figure 
8. Thus, according to PFIS, for the maintenance tasks in our 
study, only 3% of all possible class-class traversals were 
potentially relevant. 

Did PFIS pick the right 3%? It was pretty close for Issue B, 
predicting 42 of the 61 pairs of classes (69%) that were 
traversed more than once. Only 7 visited pairs were not 
explained by either scent or topological relationships. For 
issue MF, PFIS was not as stellar, but of the 103 pairs trav-
ersed more than once, it still predicted 33 (32%). However, 
47 pairs were not explained by scent or topological rela-
tionships. These relationships are shown in Figure 9.  

These results were borne out statistically (Table 2). For 
Issue B, PFIS predicted edge traversals remarkably well—
almost as well as it predicted the allocation of time and vis-
its to classes (recall Table 1). However, it only weakly pre-
dicted edge traversals for Issue MF, also shown in Table 2. 

We further investigated the pairings visited more than once 
for each issue that were not in the topology, to determine 
why the topology did not contain these edges. As shown in 
Table 3, some of the edges for issue MF could not be ex-
plained by the topology because two participants each 
added a class to the source code to implement the missing 
feature. Some class-class pairings had words in common 
even if they did not share any links between them (class-
class scent). For Issue MF, we noticed some traversals that 
could be explained by indirect links. In such cases, one 
class would contain a variable of an interface type, and the 
other class would implement the interface. In some cases, 
membership to a common package explained the relation-
ship between two classes (which did not fulfill the one-click 
definition of “link”). The remaining edges were a collection 

  Issue B Issue MF
time span 0.191 0.162 Interword correlation 
visits 0.204 0.171 
time span 0.221 0.194 PFIS-Topology 
visits 0.221 0.185 
time span 0.271 0.160 PFIS 
visits 0.278 0.167 
time span 0.281 0.167 Collective 
visits 0.328 0.212 

Table 1: Average correlation between each programmer’s 
navigation and the predictions of each model. 

33,444

1,162

2,450
33,444

1,162

2,450

 
Figure 8: Edges. (Top): Inner oval: edges predicted by PFIS. 
Middle oval: edges in topology (only). Outer oval: edges not 

in topology or PFIS.   
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Figure 9: (Left): Same as Figure 8, but from perspective of 
Issue B; right rectangle highlights links visited more than 
once for B. (Right): From perspective of Issue MF; bottom 
rectangle highlights links visited more than once for MF.  
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of other explanations, including use of search and switches 
among multiple source code windows. 

Back-links may be an important factor. Some edges in the 
rows of Table 3 were traversed when programmers went 
back to a class they had just come from, or cycled between 
two classes; namely in 6 out of Issue B’s 32 edges that were 
traversed more than 3 times, and 27 out of 54 such edges 
for issue MF. Such back-links were not in the PFIS model 
(and have not been modeled by web-oriented information 
foraging models either), but these results show that they 
should be considered for inclusion in such models.  

A final point is that not all scent is textual. Information for-
aging theory as applied to the web has pointed this out, but 
PFIS does not yet model it.  

For example, programmers often derive hypotheses from 
observing run-time behavior. A possible corroboration of 
this notion of hypotheses’ interactions with information 
foraging may be that many of the edge traversals through-
out the rows of Table 3 involved GUI classes. Thus, we 
next consider hypotheses and scent.  

Participants’ Hypotheses 
Prior research into debugging suggests that programmers 
form hypotheses about the reasons and places relevant to 
bugs, and that much of debugging revolves around attempts 
to confirm, refine, or refute those hypotheses [2, 14, 30].  

Recall that PFIS performed better on issue B than on issue 
MF. A key assumption behind the PFIS model is that, when 
the issue being pursued starts with a bug report, the pro-
grammer forms hypotheses that linguistically relate to the 
bug report. Implicit in this assumption is the premise that a 
model can omit hypotheses and still be able to predict the 
necessary places to navigate well enough to be useful. 

We decided to probe this premise by investigating whether 
programmers’ hypothesis formation played fundamentally 
differing roles in the two issues. We investigated this ques-
tion via content analysis of four transcribed participant ses-
sions, two sessions for each issue. Two of the authors inde-
pendently coded each transcript, replaying the videos at the 
same time to maintain context, coding the formation of an 
entirely new hypothesis, and coding for expanding or revis-

ing an existing hypothesis. The two coders reached agree-
ment on over 90% of their codes.  

These sessions revealed interesting differences in the tim-
ing, generality, and process of hypothesis formation for 
Issue B versus Issue MF. For example, when working on 
Issue B, participant 96s was able to formulate a specific and 
concrete hypothesis about exactly what needs to change 
within 5 minutes into the task. Participant 82 likewise 
formed a very concrete hypothesis for Issue B, and even 
more quickly. (Times are mm:ss) 

Participant 96s (05:05): This is saying that there is 
HTML in the thing that shows up in the headline part. 

Participant 82s (01:45): These escape characters... 
the apostrophes are not making it in ... Somehow we 
want to have escaped XML because this is in CDATA.   

In contrast, for Issue MF, the hypotheses were more open-
ended, possibly because there were multiple correct solu-
tions to the problem. For example, Participant 85s’s first 
hypothesis, given in the first minute, was simply a broad 
hypothesis about what he had to accomplish. It was 23 
minutes into Issue MF, after the subject had investigated the 
code and referred back to the bug report, until he provided a 
hypothesis about how to actually address part of Issue MF:  

Participant 85s (00:56): We want to remove the items 
based on the unread age and based on the read age.   

Participant 85s (23:21): Now we want to add the ex-
piration.  

Participant 84s decided that it would be hard to develop a 
useful hypothesis about Issue MF without a better under-
standing of RSSOwl, so after forming a general hypothesis 
about “adding” at six minutes in, he changed his strategy, 
deciding to experiment with the system before attempting to 
refine the hypothesis. His experiments continued, without 
further hypothesis verbalizations for 22 more minutes. At 
that time he finally began to become form a concrete hy-
pothesis about a suitable “hook” for adding the feature. 

Participant 84s (06:28): So what we are looking to 
do is to add — I think what I’ll start doing is trying to 
archive RSS feed entries after say some amount of 
time and then I’ll make it increasingly more complex.  

Participant 84s (28:55): When am I going to run this 
archive feature? The answer would seem to be is this 
something that is going to be run automatically? Yes. 

Thus, hypothesis formation appears to be different in nature 
between these two issues.  

One possible cause may be the wording of the bug reports, 
which are shown in Figure 10. Note that Issue B’s bug re-
port is fairly specific about symptoms and circumstances, 
which could have enabled the early formation of concrete 
hypotheses demonstrated by our participants. This could be 
simply a matter of better wording and content in these par-
ticular reports, but we propose that it could be in part inher-

 

Edge traversals predicted by Issue B Issue MF 
PFIS-Topology 0.477 0.18 
PFIS 0.46 0.19 
Table 2: Spearman correlation between edge visits and proxi-
mal scent, call graph relations. All correlations shown were 

significant at p < 0.01. 
 

Edges explained by Issue B Issue MF 
Added class 0 11 
Class-class scent 3 6 
Indirect link not modeled 0 8 
Membership to same package 3 10 
Other 1 12 

Table 3: Why are edges outside the topology?  
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ent in the traditions of reporting these two types of software 
issues. Reporting bugs often entails enumerating specific 
circumstances gone wrong with the assumption that the 
specifications are fairly well understood. In contrast, report-
ing the need for missing features emphasizes providing 
reasonably complete specifications for the desired feature. 
These differences are reflected in the bug reports in the 
figure. They are also reflected in comments that were 
posted to these bug reports. For Issue B, three of the four 
comments related to the possible location of the bug. (The 
fourth was about how easy/difficult the fix might be.) For 
Issue MF, the three comments elaborated upon the specifi-
cations. 
We have previously suggested that it may be possible to use 
participants’ words typed into “search” tools as surrogates 
for their hypotheses [17]. Eleven of our twelve participants 
used search, and searching was at least somewhat involved 
in the process of their work on their hypotheses.  
Early concrete hypothesis formation for Issue B was appar-
ent in our participants’ search behaviors. They used search 
more for Issue B (59 searches, versus 32 for Issue MF), and 
what they searched for were low-level “how to” items on 
the web (34% of their searches), and locations in the code 
base (66%). An example of a “how to” web search was 
participant 82s’s search for “converting strings to HTML 
java”, and an example of a location search was his search 
for “addListener” in the code base.  
In Issue MF, our participants searched much less than in 
Issue B—specifically, only 54% as much. The tasks were 
varied in order, so learning effects did not account for this 
difference. More to the point, the Issue MF searches were 
almost all in the code base (94%), looking for a hook. For 
example, Participant 85s’s only two searches were in the 
code base, looking for “items.put” and “Date”.  
These results suggest that there are (at least) two relation-
ships between hypotheses and search strings: searches in 
attempting to form a concrete hypothesis, and searches to 
pursue that concrete hypothesis after it is formed. For Issue 
B, most of the searches were of the pursuit type (since con-

crete hypotheses were formed fairly quickly), whereas for 
Issue MF, most of the searches were of the formation type, 
and were used only about half as much as with Issue B.  

DISCUSSION AND IMPLICATIONS 
The ultimate goal of this work is to provide theoretical 
grounding for tools to support software maintenance. The 
results from our predictive model are consistent with a 
number of descriptive theories of debugging [2, 16, 30], but 
also add to the theoretical understanding of debugging by 
providing a dynamic model. The model can be used in de-
scriptive, explanatory, and predictive manners.  
The PFIS model’s performance shows that it already allows 
us to provide independent evidence about the premises be-
hind current systems, such as Hipikat. It also allows us to 
reason about new design possibilities. In the domain of web 
navigation, information foraging and WUFIS have been 
used as the basis for both automated usability evaluation 
[4], and in browsing and navigation tools [19]. Similar ap-
plications of the theory could be developed for program 
navigation.  
For example, just as ScentTrails [19] has been used to suc-
cessfully speed up web navigation by highlighting hyper-
links to indicate paths to search results, our results suggest 
that source code navigation could be enhanced by highlight-
ing links in class files with high scent for the bug report 
under consideration. Scent-based indicators could also be 
added to existing software tools based on other ways of 
discovering relationships between source code, such as de-
veloper navigation and action histories [27, 28, 31, 32], or 
structural or lexical relationships [5, 7, 8]. Scent indicators 
may also enhance the use of call graphs and program slices 
during maintenance, by indicating an additional relationship 
between parts of source code. Fault localization tools, 
which use multiple information sources to make a best 
guess about the location of a bug, may also benefit by using 
scent as an additional factor. 
Information foraging theories have also been used as the 
basis for web site usability evaluation tools. In an analogous 
fashion, the PFIS model could be used for usability analysis 
of bug reports. More helpful bug reports may get written if 
scent-based feedback is provided to bug report authors re-
garding how well their report is narrowing the possible set 
of places the bug might be located. PFIS could also be used 
to evaluate proximal scent strength within source code it-
self, which could ultimately be used by programmers to 
improve their naming and commenting practices. 
The above design suggestions are speculative, but they 
demonstrate how PFIS, as a predictive model, has the po-
tential to both inform and evaluate tool development, as has 
been the case for information foraging in web navigation. 

CONCLUSION 
In this paper we presented PFIS (Programmer Flow by In-
formation Scent), an information foraging model of pro-
grammers’ navigation during maintenance, and evaluated it 
empirically. The main results of the evaluation were that: 

HTML entities in titles of atom items not decoded 
In an atom feed such as crookedtimber.org/feed/atom/ you 
can find both the post titles and the post contents ex-
pressed as escaped-HTML. The post contents (including 
entities) are rendered correctly by RSSOwl, but the post 
titles that contain HTML entities are not. The entities, like 
&#8217; are not expanded by RSSOwl in post titles. I have  
attached a snapshot of that feed at this point in time.  

Remove Feed Items Based on Age 
This is based on the assumption that the ability to archive 
feeds is available. Create an option to delete feed items 
after a certain amount of time has passed. Kind of like a 
rule saying ‘Delete all feed items that are 3 months old’.  

Figure 10: Snapshot of the bug reports’ contents. (Top): Issue 
B. (Bottom): Issue MF. 
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• The PFIS model’s performance was close to aggregated 
human decisions and better than individual fellow pro-
grammers’ decisions as to where to navigate.  

• PFIS missed only a small fraction of the 61 traversals 
that occurred more than once for Issue B. However, for 
Issue MF, it missed more of them. Many of the edges 
PFIS missed were topological relationships not usually 
considered by information foraging algorithms, such as 
back-links, and scent relationships not in the topology. 
These provide opportunities for future improvements. 

• Our results suggest that the difference in prediction lev-
els for the bug versus new feature may be due in part to 
differences in how information foraging related to hy-
potheses. We conjecture that this is due to inherent dif-
ferences between the reporting of bugs versus feature 
requests, with the former tending to describe scent-
carrying aspects such as circumstances and locations, 
but the latter describing specifications, which may have 
less scent. 

Most important, our results suggest that information forag-
ing’s ability to predict programmer navigation during main-
tenance is indistinguishable from aggregated historical pro-
gram navigation data. This in turn suggests that information 
foraging can provide a theoretical account of program navi-
gation in software maintenance.  
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