
07081 Abstracts Collection

End-User Software Engineering

� Dagstuhl Seminar �

Margaret M. Burnett1, Gregor Engels2, Brad A. Myers3 and Gregg Rothermel4

1 Oregon State University, US
burnett@cs.orst.edu

2 University of Paderborn, DE
engels@upb.de

3 Carnegie Mellon University - Pittsburgh, US
bam@cs.cmu.edu

4 University of Nebraska - Lincoln, US
grother@cse.unl.edu

Abstract. From 18.01.07 to 23.02.07, the Dagstuhl Seminar 07081 �End-
User Software Engineering� was held in the International Conference and
Research Center (IBFI), Schloss Dagstuhl. During the seminar, several
participants presented their current research, and ongoing work and open
problems were discussed. Abstracts of the presentations given during the
seminar as well as abstracts of seminar results and ideas are put together
in this paper. The �rst section describes the seminar topics and goals in
general. Links to extended abstracts or full papers are provided, if avail-
able.

Keywords. End user software engineering, end-user programming, human-
computer interaction, programming language design

07081 Executive Summary � End-User Software
Engineering

From 18.01.07 to 23.02.07, the Dagstuhl Seminar 07081, "End-User Software
Engineering�, was held in the International Conference and Research Center
(IBFI), Schloss Dagstuhl. During the seminar, several participants presented
their current research, and ongoing work and open problems were discussed.
This document summarizes the event.

Keywords: End user software engineering, end-user programming, human-
computer interaction, programming language design

Joint work of: Burnett, Margaret M.; Engels, Gregor; Myers, Brad A.; Rother-
mel, Gregg

Extended Abstract: http://drops.dagstuhl.de/opus/volltexte/2007/1098

Dagstuhl Seminar Proceedings 07081
End-User Software Engineering
http://drops.dagstuhl.de/opus/volltexte/2007/1100

http://drops.dagstuhl.de/opus/volltexte/2007/1098

2 M. M. Burnett, G. Engels, B. A. Myers and G. Rothermel

Gender HCI Issues in End-User Software Engineering
Environments

Laura Beckwith (Oregon State University, USA)

Although gender di�erences in a technological world are receiving signi�cant re-
search attention, much of the research and practice has aimed at how society
and education can impact the successes and retention of female computer sci-
ence professionals. The possibility of gender issues within software, however, has
received almost no attention. We hypothesize that factors within software have a
strong impact on how well female problem solvers can make use of the software.
Evidence from other �elds and investigations of our own have revealed evidence
supporting this hypothesis.

Keywords: End-user software engineering, gender, self-e�cacy

Joint work of: Beckwith, Laura; Burnett, Margaret; Wiedenbeck, Susan

Extended Abstract: http://drops.dagstuhl.de/opus/volltexte/2007/1076

End User Programming for Scientists: Modeling Complex
Systems

Andrew Begel (Microsoft Research - Redmond, USA)

Towards the end of the 20th century, a paradigm shift took place in many sci-
enti�c labs. Scientists embarked on a new form of scienti�c inquiry seeking to
understand the behavior of complex adaptive systems that increasingly de�ed
traditional reductive analysis. By combining experimental methodology with
computer-based simulation tools, scientists gain greater understanding of the
behavior of systems such as forest ecologies, global economies, climate modeling,
and beach erosion. This improved understanding is already being used to in�u-
ence policy in critical areas that will a�ect our nation's future, and the world's.

Keywords: StarLogo, Science, Modeling, Complex Systems

Full Paper: http://drops.dagstuhl.de/opus/volltexte/2007/1077

Empirical Foundations for EUSE and Interdisciplinary
Design for EUSE

Alan Blackwell (Cambridge University, GB)

How does EUSE research build on empirical studies of programmers, and what
kinds of empirical research might provide foundations for future EUSE research?

http://drops.dagstuhl.de/opus/volltexte/2007/1076
http://drops.dagstuhl.de/opus/volltexte/2007/1077

End-User Software Engineering 3

My own work on interdisciplinary design draws comparisons across academic
and professional boundaries, applying the results to the design of new technolo-
gies, and the critical assessment of technology.

Keywords: Interdisciplinary design, Empirical Studies of Programmers, Psy-
chology of Programming, Real World Research

Full Paper: http://drops.dagstuhl.de/opus/volltexte/2007/1078

Empirical Studies in End-User Software Engineering
and Viewing Scienti�c Programmers as End-Users �
POSITION STATEMENT �

Je�rey Carver (Mississippi State Univ., USA)

My work has two relationships with End User Software Engineering. First, as
an Empirical Software Engineer, I am interested in meeting with people who
do research into techniques for improving end-user software engineering. All
of these techniques need to have some type of empirical validation. In many
cases this validation is performed by the researcher, but in other cases it is not.
Regardless, an independent validation of a new approach is vital. Second, an area
where I have done a fair amount of work is in software engineering for scienti�c
software (typically written for a parallel supercomputer). These programmers are
typically scientists who have little or no training in formal software engineering.
Yet, to accomplish their work, they often write very complex simulation and
computation software. I believe these programmers are a unique class of End-
Users that must be addressed

Keywords: Empirical Studies

Full Paper: http://drops.dagstuhl.de/opus/volltexte/2007/1079

What is an end user software engineer?

Steven Clarke (Microsoft Research - Redmond, USA)

The group of people described as end user software engineers are a very large and
diverse group. For example, research scientists building simulations of complex
processes are described as end user software engineers as are school teachers who
create spreadsheets to track the progress of their students. Given the di�erence
in background and domains in which di�erent end user software engineers work,
I argue that it is important to distinguish between di�erent categories of end user
software engineers. Such distinctions will enable us to determine which tools and
techniques are appropriate for which types of end user software engineers. Indeed,
such distinctions will also make clear the di�erences and similarities between end
user software engineers and so called professional software engineers.

http://drops.dagstuhl.de/opus/volltexte/2007/1078
http://drops.dagstuhl.de/opus/volltexte/2007/1079

4 M. M. Burnett, G. Engels, B. A. Myers and G. Rothermel

Keywords: Personas, End user software engineer,Professional software engineer

Full Paper: http://drops.dagstuhl.de/opus/volltexte/2007/1080

Software environments for supporting End-User
Development

Maria Francesca Costabile (University of Bari, I)

Our work on End-User Development primarily focuses on the needs of a speci�c
community of users, namely professionals in diverse areas outside of computer
science, such as engineers, physicians, geologists and physicist, who are not pro-
fessional programmers. We refer to them as domain experts. We developed a
participatory design methodology, called SSW (Software Shaping Workshop)
methodology, aimed at designing software environments that support domain
experts to become co-designers of their tools. The di�erent stakeholders can con-
tribute their own views on the problem to design, development and maintenance
of an application, using their own languages and notations.We also proposed
a model of the Interaction and Co-Evolution processes (ICE model) occurring
between users and system. It extends a previous model of Human-Computer
Interaction by considering an important phenomenon occurring during the use
of interactive systems, called co-evolution of users and systems.

Keywords: Customized software environments, meta-design, participatory de-
sign, domain expert

Joint work of: Costabile, Maria Francesca; Piccinno, Antonio

Full Paper: http://drops.dagstuhl.de/opus/volltexte/2007/1081

Meta-UI for Ambient Spaces: Can MDE help?

Joelle Coutaz (Université de Grenoble, F)

This position paper introduces the concept of Meta-UI and outlines our technical
approach. This approach draws upon the �exibility of MDE and SOA to allow
users, by the way of a meta-UI, to control the ambient space in which they live.

Keywords: Meta-UI, MDE, SOA

Full Paper: http://drops.dagstuhl.de/opus/volltexte/2007/1082

http://drops.dagstuhl.de/opus/volltexte/2007/1080
http://drops.dagstuhl.de/opus/volltexte/2007/1081
http://drops.dagstuhl.de/opus/volltexte/2007/1082

End-User Software Engineering 5

Rethinking the Software Life Cycle: About the Interlace of
Di�erent Design and Development Activities

Yvonne Dittrich (IT University of Copenhagen, DK)

Software engineering research addresses professional ways of designing, develop-
ing and implementing software. So far, software engineering more or less takes
for granted that software professionals have control over the material implemen-
tation of a piece of software. Though users might use the software innovatively
or even customise it, neither end-user tailoring (EUT) nor end-user development
(EUD) are treated systematically regarding the impact of deferring part of the
design to the use context on software development technologies or processes.
Especially the development, adaptation and con�guration of software products,
software that is used by more than one user in more than one organisation makes
visible that di�erent parallel ongoing development activities often distributed
over more than two organisations have to be coordinated.

Keywords: End User Development, Software Processes

Full Paper: http://drops.dagstuhl.de/opus/volltexte/2007/1084

Requirements and Modeling for End-User Developers

Gregor Engels (Universität Paderborn, DE)

Eliciting the requirements and creating a model of a software system are stan-
dard activities in the development process of professional software development.
The talk discusses whether these two development phases are also present in
end-user software development and how they could look like. It is argued that
one has to distinguish between at least two types of end-user software developers.
Those, who are not professional software developers, but work in an engineer-
ing domain and follow stepwise development processes. They are used to have
requirements speci�cations as well as models, too. But, non-professional, non-
engineering end-users, e.g. spreadsheet developers, don't and would not like to
distinguish between di�erent steps in the development process. Therefore, we
propose to hide the distinction between these di�erent steps by closely intercon-
necting requirements speci�cation, models and code, and by putting them into
one development box. By o�ering appropriate interface functions like create,
adapt, re�ne, etc. to the box, the end-user is supported in developing software
without being aware that he is undergoing a stepwise re�nement process from
requirements speci�cations towards concrete code.

Keywords: End-User Modeling

Full Paper: http://drops.dagstuhl.de/opus/volltexte/2007/1085

http://drops.dagstuhl.de/opus/volltexte/2007/1084
http://drops.dagstuhl.de/opus/volltexte/2007/1085

6 M. M. Burnett, G. Engels, B. A. Myers and G. Rothermel

Exploiting Domain-Speci�c Structures For End-User
Programming Support Tools

Martin Erwig (Oregon State University, USA)

In previous work we have tried to transfer ideas that have been successful in
general-purpose programming languages and mainstream software engineering
into the realm of spreadsheets, which is one important example of an end-user
programming environment.

More speci�cally, we have addressed the questions of how to employ the
concepts of type checking, program generation and maintenance, and testing in
spreadsheets. While the primary objective of our work has been to o�er improve-
ments for end-user productivity, we have tried to follow two particular principles
to guide our research.

(1) Keep the number of new concepts to be learned by end users at a mini-
mum.

(2) Exploit as much as possible information o�ered by the internal structure
of spreadsheets.

In this short paper we will illustrate our research approach with several ex-
amples.

Keywords: Spreadsheet, program analysis

Joint work of: Abraham, Robin; Erwig, Martin

Extended Abstract: http://drops.dagstuhl.de/opus/volltexte/2007/1086

Meta-Design: A Conceptual Framework for End-User
Software Engineering

Gerhard Fischer (University of Colorado, USA)

In a world that is not predictable, improvisation, evolution, and innovation are
more than a luxury: they are a necessity. The challenge of design is not a mat-
ter of getting rid of the emergent, but rather of including it and making it an
opportunity for more creative and more adequate solutions to problems.

Meta-design is an emerging conceptual framework aimed at de�ning and cre-
ating social and technical infrastructures in which new forms of collaborative
design can take place. It extends the traditional notion of system design beyond
the original development of a system. It is grounded in the basic assumption
that future uses and problems cannot be completely anticipated at design time,
when a system is developed. Users, at use time, will discover mismatches be-
tween their needs and the support that an existing system can provide for them.
These mismatches will lead to breakdowns that serve as potential sources of new
insights, new knowledge, and new understanding.

http://drops.dagstuhl.de/opus/volltexte/2007/1086

End-User Software Engineering 7

Keywords: Meta-design, consumers and designers, unself-conscious cultures of
design

Extended Abstract: http://drops.dagstuhl.de/opus/volltexte/2007/1087

Dependability in Web Software

Marc Fisher (University of Nebraska, USA)

The web is an increasingly important platform used for a wide variety of tasks
on a regular basis. And as the web becomes more important, the ways in which it
is used grows increasingly sophisticated. End users build web pages and applica-
tions, use web applications in new and unexpected ways and use web macro tools
to automate web-based tasks. All of these tasks are error-prone. In addition, they
often depend on external components outside of the control of the developer or
end user. Therefore we have been developing tools and methodologies to assist
users with these

Keywords: Web Applications, Dependability

Joint work of: Elbaum, Sebastian; Fisher II, Marc; Rothermel, Gregg

Full Paper: http://drops.dagstuhl.de/opus/volltexte/2007/1089

A Methodology to Improve Dependability in Spreadsheets

Marc Fisher (University of Nebraska, USA)

Spreadsheets are one of the most commonly used end user programming envi-
ronments. As such, there has been signi�cant e�ort on the part of researchers
and practitioners to develop methodologies and tools to improve the depend-
ability of spreadsheets. Our work has focused on the development of the �What
You See Is What You Test� (WYSIWYT) family of techniques. WYSIWYT is
designed to be seamlessly integrated into a spreadsheet environment and the
user's development processes. It uses visual devices that are integrated into the
user's spreadsheet to guide the process of �nding and �xing problems with the
spreadsheet.

Keywords: Spreadsheets, Dependability, Testing

Joint work of: Burnett, Margaret; Fisher II, Marc; Rothermel, Gregg

Full Paper: http://drops.dagstuhl.de/opus/volltexte/2007/1088

http://drops.dagstuhl.de/opus/volltexte/2007/1087
http://drops.dagstuhl.de/opus/volltexte/2007/1089
http://drops.dagstuhl.de/opus/volltexte/2007/1088

8 M. M. Burnett, G. Engels, B. A. Myers and G. Rothermel

Designers Need End-User Software Engineering

Mark Gross (Carnegie Mellon Univ. - Pittsburgh, USA)

This position paper for the End-User Software Engineering workshop outlines
three systems that employ end user programming for designers: a constraint-
based design environment; a sketch recognition interface for knowledge based
systems, and a physical programming environment for building modular robots.

Keywords: Design, end-user, programming, physical, graphics, constraints

Extended Abstract: http://drops.dagstuhl.de/opus/volltexte/2007/1090

Barriers to Successful End-User Programming

Andrew J. Ko (Carnegie Mellon University, USA)

In my research and my personal life, I have come to know numerous people that
our research community might call end-user programmers. Some of them are
scientists, some are artists, others are educators and other types of professionals.
One thing that all of these people have in common is that their goals are entirely
unrelated to producing code. In some cases, programming may be a necessary
part of accomplishing their goals, such as a physicist writing a simulation in
C or an interaction designer creating an interactive prototype. In other cases,
programming may simply be the more e�cient alternative to manually solving
a problem: one might �nd duplicate entries in an address book by visual search
or by writing a short Perl script.

Keywords: End-user programming, learning, empirical studies

Full Paper: http://drops.dagstuhl.de/opus/volltexte/2007/1091

End-User Software Engineering Position Paper

Henry Lieberman (MIT - Cambridge, USA)

This position paper outlines work on making programming easier, and its rela-
tionship to end-user software engineering.

Keywords: End-user programming

Extended Abstract: http://drops.dagstuhl.de/opus/volltexte/2007/1092

http://drops.dagstuhl.de/opus/volltexte/2007/1090
http://drops.dagstuhl.de/opus/volltexte/2007/1091
http://drops.dagstuhl.de/opus/volltexte/2007/1092

End-User Software Engineering 9

End Users Creating More E�ective Software

Brad Myers (Carnegie Mellon University, USA)

This position paper brie�y summarizes paradigms used to create end-user soft-
ware.

Keywords: End user software engineering

Extended Abstract: http://drops.dagstuhl.de/opus/volltexte/2007/1093

End-User Design

Alexander Repenning (University of Lugano, CH)

Are UML diagrams a good tool to teach middle school students how to make
video games? Probably not, but what kinds end-user design aids such as mental
models, sca�olding structures, examples or other kinds of objects to think we can
we give to end-users in order to gradually introduce them to good programming
practice?

Keywords: End-user programming, end-user development, computers in edu-
cation, programming environment for kids

Extended Abstract: http://drops.dagstuhl.de/opus/volltexte/2007/1099

Position paper for EUSE 2007 at Dagstuhl

Mary Beth Rosson (Penn State University, USA)

This brief position paper summarizes several facets of research underway by
the Informal Learning in Software Development group at Pennsylvania State
University. The focus of the work reported is on end user web development, with
discussion of user needs and tools that might help to meet these needs.

Keywords: End user web development

Extended Abstract: http://drops.dagstuhl.de/opus/volltexte/2007/1092

End-User Software Engineering and Professional End-User
Developers

Judith Segal (The Open University, GB)

There is a great variety of end user developers and a great variety of contexts
within which they develop. End user developers may have little or no experience
of using computers or may be adept coders in general purpose programming
languages.

http://drops.dagstuhl.de/opus/volltexte/2007/1093
http://drops.dagstuhl.de/opus/volltexte/2007/1099
http://drops.dagstuhl.de/opus/volltexte/2007/1092

10 M. M. Burnett, G. Engels, B. A. Myers and G. Rothermel

They may develop their software on their own over a few minutes or in
groups over years. The software produced may be for their own use only or for
a large community of users. It may be inconsequential or the consequences of
its failure may be great. In this paper, we identify and discuss the problems of
one particular group of end user developers � professional end user developers �
who have no fear of coding and who develop software which plays a vital part
in furthering their professional goals.

Keywords: Professional end user developers, scienti�c computing

Extended Abstract: http://drops.dagstuhl.de/opus/volltexte/2007/1095

Helping Everday Users Establish Con�dence for Everyday
Applications

Mary Shaw (CMU - Pittsburgh, USA)

End users obtain their desired results by combining elements of information and
computation from di�erent applications. Software engineering provides little sup-
port for identifying, selecting, or combining these elements � that is, for helping
end users to design computational support for their own tasks. Software engineer-
ing provides even less support to help end users to decide whether the resulting
system is su�ciently dependable � whether it will meet their expectations. Many
users, especially end users, base judgments about software on informal and un-
dependable information, and they draw conclusions with informal rather than
rational decision methods. We have been developing support for everyday de-
pendability, with an emphasis on expressing expectations in abstractions familiar
to the user and on obtaining software behavior that reasonably satis�es those
expectations. In this Dagstuhl I would like to explore the di�erences between
everyday informal reasoning and the rational processes of computer science in
order to develop means for establishing credible indications of con�dence for end
users.

Keywords: Everyday users, everyday dependability, data feeds, task level of
abstraction, topes

Extended Abstract: http://drops.dagstuhl.de/opus/volltexte/2007/1096

End-User Development Techniques for Enterprise
Resource Planning Software Systems

Michael Spahn (SAP Research - Darmstadt, D)

The intent of this position paper is to present the focus of interest of our end-user
development (EUD) related research at SAP Research CEC Darmstadt.

http://drops.dagstuhl.de/opus/volltexte/2007/1095
http://drops.dagstuhl.de/opus/volltexte/2007/1096

End-User Software Engineering 11

As we are in an early phase of research, research topics will be presented
rather than detailed results. We focus on investigating and applying EUD tech-
niques suitable for enterprise resource planning (ERP) software systems, es-
pecially for small and medium-sized enterprises (SMEs). Our current research
addresses the sub-domains of work�ow management and business intelligence.

Keywords: End-User Development (EUD), Enterprise Resource Planning (ERP),
Work�ow Management, Business Intelligence (BI)

Joint work of: Spahn, Michael; Scheidl, Stefan; Stoitsev, Todor

Full Paper: http://drops.dagstuhl.de/opus/volltexte/2007/1097

End-user (further) development: A case for negotiated
semiotic engineering

Clarisse de Souza (PUC-Rio de Janeiro, BR)

Semiotic Engineering views human-computer interaction as a special case of
computer-mediated communication. In it, designers communicate to users their
design vision about computer artifacts: what they are meant to do and how,
but also what bene�ts they bring to users' lives (as perceived by designers).
The semiotic theories of meaning subscribed by Semiotic Engineering postulate
that meanings always evolve - there are no �xed meanings. Thus, the meanings
users assign to computer artifacts and the meaningful situations in which they
expect such artifacts to be valuable evolve. End user development is thus a
requirement for "useful artifacts". Users should be able to encode new meanings
and meaningfulness in them. However, there are limitations for this encoding:
helping designers and users negotiate new meanings at interaction time, through
the mediation of systems' interfaces, is thus a key issue for Semiotic Engineering.
In this scenario, explanations - especially those about what artifacts cannot do,
have not done, and why - are cruacially important.

Keywords: Semiotic engineering, explanations, representation codes

Extended Abstract: http://drops.dagstuhl.de/opus/volltexte/2007/1083

End-user Programming of Ambient Narratives

Mark van Doorn (Philips Research Lab. - Eindhoven, NL)

Ambient Intelligence is a vision on the future of consumer electronics, telecom-
munications and computing in which devices move into the background while at
the same time placing the user experience in the foreground. Producing Ambi-
ent Intelligent environments on a large scale is problematic however. First, it is
technologically not possible in the foreseeable future to mass produce a product

http://drops.dagstuhl.de/opus/volltexte/2007/1097
http://drops.dagstuhl.de/opus/volltexte/2007/1083

12 M. M. Burnett, G. Engels, B. A. Myers and G. Rothermel

or service that generates Ambient Intelligence, given the current state-of-the-art
in machine learning and arti�cial intelligence. Second, it is economically not fea-
sible to manually design and produce Ambient Intelligence applications for each
person individually. One of the main research questions in creating such envi-
ronments is the design of a system capable of supporting mass customization of
ambient experiences by means of end-user programming. A brief outline of the
approach taken to address this question is described including future research.

Keywords: Ambient intelligence, storytelling, hypertext, end-user programming

Full Paper: http://drops.dagstuhl.de/opus/volltexte/2007/1075

http://drops.dagstuhl.de/opus/volltexte/2007/1075

Dagstuhl Seminar 07081: End-User Software Engineering

Margaret M. Burnett, Gregor Engels, Brad Myers, Gregg Rothermel

1 March, 2007

The number of end users creating software is far larger than the number of professional programmers. These

end users are using various languages and programming systems to create software in forms such as spreadsheets,

dynamic web applications, and scientific simulations. This software needs to be sufficiently dependable, but substantial

evidence suggests that it is not.

Solving these problems involves not just software engineering issues, but also several challenges related to the

users that the end user software engineering intends to benefit. End users have very different training and background,

and face different motivations and work constraints, than professional programmers. They are not likely to know

about such things as quality control mechanisms, formal development processes, system models, language design

characteristics, or test adequacy criteria, and are not likely to invest time learning about them.

It is important to find ways to help these users pursue their goals, while also alerting them to dependability prob-

lems, and assist them with their explorations into those problems. Further, it is important to work within the contexts

with which these users are familiar, which can include programming environments that have not been directly consid-

ered by software engineering or programming languages researchers.

These challenges require collaborations by teams of researchers from various computer science subfields, includ-

ing specialists in end-user-programming (EUP) and end-user development (EUD), researchers expert in software engi-

neering methodologies and programming language design, human-computer interaction experts focusing on end-user

programming, and empiricists who can evaluate emerging results and help understand fundamental issues in support-

ing end-user problem solving. Collaborations with industrial partners must also be established, to help ensure that the

real needs of end-user programming environments in industry are met.

This Dagstuhl seminar was organized in order to bring together researchers from these various groups and with

the various appropriate backgrounds, along with an appropriate selection of industrial participants. The seminar al-

lowed the participants to work together on the challenges faced in helping end-user programmers create dependable

software, and on the opportunities for research addressing these challenges. Our goals were to help these researchers

better understand (1) the problems that exist for end-user programmers, (2) the environments, domains and languages

in which those programmers create software, (3) the types of computing methodologies (especially in the areas of

software engineering and programming language design) that can be brought to bear on these problems and in these

domains, and (4) the issues that impact the success of research in this area. In addition, an overarching goal was to

1
Dagstuhl Seminar Proceedings 07081
End-User Software Engineering
http://drops.dagstuhl.de/opus/volltexte/2007/1098

build awareness of the interdisciplinary connections and opportunities that exist for researchers working in the area.

The seminar included several tutorial-style presentations by experts on software engineering, programming lan-

guages, human-computer interaction, and empirical studies in relation to end-user software engineering. The program

was complemented with brief presentations by some participants on topics of a more specialized nature, grouped into

sessions on related topics. We also incorporated system demonstrations of prototypes and environments relevant to

the topics. Ample time was allowed for interactive discussion sessions.

Most of the seminar participants provided white papers summarizing their primary interests in the area, includ-

ing work that they are doing and open problems. These white papers are compiled into the seminar proceedings.

Additional contributions to the seminar were provided as slides, and are available on the Dagstuhl website for the

seminar.

2

A Methodology to Improve Dependability in Spreadsheets

Margaret Burnett
Oregon State University

burnett@eecs.oregonstate.edu

Marc Fisher II, Gregg Rothermel
University of Nebraska - Lincoln

{mfisher,grother}@cse.unl.edu

1 Introduction

Spreadsheets are one of the most commonly used end-
user programming environments. As such, there has
been significant effort on the part of researchers and
practitioners to develop methodologies and tools to
improve the dependability of spreadsheets.

Our work has focused on the development of the
“What You See Is What You Test” (WYSIWYT)
family of techniques. WYSIWYT is designed to be
seamlessly integrated into a spreadsheet environment
and the user’s development processes. It uses visual
devices that are integrated into the user’s spreadsheet
to guide the process of finding and fixing problems
with the spreadsheet.

There are three major components to the WYSI-
WYT methodology: a testing and debugging
methodology, an assertions mechanism, and the
“Surprise-Explain-Reward” strategy.

2 Testing and Debugging
Methodology

WYSIWYT provides a testing and debugging
methodology [3]. As the user edits their spreadsheet
they are provided with visual devices indicating the
“testedness” (coverage relative to an underlying data-
flow adequacy criterion) of the cells and the spread-
sheet and the ability to mark the values in cells as
correct or incorrect. If the user marks a cell’s value
as correct, the testedness of the contributing cells is
updated as is the testedness of the spreadsheet. If,
instead, the user marks a cell’s value as incorrect, ad-
ditional information is displayed to the user about the
“fault likelihood” of cells based on the number of cor-
rect and incorrect values to which they contribute[4].
Figure 1 shows our visual devices in the Excel spread-
sheet language.

In addition to tracking testedness and fault likeli-
hood, WYSIWYT includes a “Help-Me-Test” feature

that generates new test cases to cover unexercised
portions of the spreadsheet [2] or replays test cases
to re-validate changed portions of the spreadsheet.

3 Assertions Mechanism

WYSIWYT also includes an assertions mechanism
where users can supply a valid range of values for
a cell [1]. These ranges are then propagated through
dependent cells using interval arithmetic techniques,
and conflicts between user-supplied ranges, propa-
gated ranges and cell values are displayed to the user.

The assertions mechanism interacts with Help-Me-
Test in two ways. User-supplied ranges on cells whose
formulas are simple data values are used to limit the
inputs used when generating new test cases. Help-
Me-Test then attempts to generate test cases that
violate the ranges on formula cells as they indicate
that the user has an error either in a formula or a
range.

4 Surprise-Explain-Reward

A key strategy in getting end users to effectively
utilize the WYSIWYT methodology is Surprise-
Explain-Reward [5]. Surprise-Explain-Reward relies
on a user’s curiosity about features in the environ-
ment. According to research about curiosity, if the
user is surprised by something, such as the check-
boxes in the spreadsheet, the surprise can arouse the
user’s curiosity, potentially causing the user to seek
an explanation.

All features and feedback must therefore be able to
explain themselves. These explanations must do two
things: first, make the user aware of why the item
is worthy of further attention (i.e., make the rewards
clear), and second, help the user make an informed
judgment as to whether the reward is worthwhile.
Users explore a feature by viewing its explanation, on
demand, via tool tips and other low-cost mechanisms.

1Dagstuhl Seminar Proceedings 07081
End-User Software Engineering
http://drops.dagstuhl.de/opus/volltexte/2007/1088

Figure 1: WYSIWYT Devices in the Excel Spreadsheet Environment

The reward in the explanation informs the user
when weighing costs, benefits, and risks in deciding
how to complete a task. By providing users a projec-
tion of future benefits, they can better assess if the
cost of using the feature is worth their time. If all
goes well, if the user follows up as advised in the ex-
planation, rewards will ensue, such as an increase in
testing coverage or the discovery of an error.

5 Future Work

Our most recent research continues to investigate
Surprise-Explain-Reward, focusing primarily on the
explanations aspect. We are doing significant experi-
mental prototyping and empirical work to understand
what end-user programmers actually want to know
when debugging, how explanations provided by the
system can help them, and how they might be able
to help each other. We are thus looking into strate-
gies end-user debuggers follow, whether the system
helps to support these strategies, and whether the ex-
planations are helpful in improving their debugging
strategies.

We are also interested in aspects of the end-user
software engineering lifecycle beyond testing and de-
bugging, and how to support them.

References

[1] M. Burnett, C. Cook, and G. Rothermel. End-
user software engineering. Communications of the
ACM, 47(9):53–58, September 2004.

[2] M. Fisher II, G. Rothermel, D. Brown, M. Cao,
C. Cook, and M. Burnett. Integrating automated
test generation into the wysiwyt spreadsheet test-
ing methodology. ACM Transactions on Soft-
ware Engineering and Maintenance, 15(2):150–
194, April 2006.

[3] G. Rothermel, M. Burnett, L. Li, C. DuPuis,
and A. Sheretov. A methodology for testing
spreadsheets. ACM Transactions on Software En-
gineering and Maintenance, 27(1):110–147, Jan-
uary 2001.

[4] J. Ruthruff, S. Prabhakararao, J. Reichwein,
C. Cook, E. Creswick, and M. Burnett. Interac-
tive, visual fault localization support for end-user
programmers. Journal of Visual Languages and
Computing, 16(1-2):3–40, February/April 2005.

[5] A. Wilson, M. Burnett, L. Beckwith, O. Granatir,
L. Casburn, C. Cook, M. Durham, and G. Rother-
mel. Harnessing curiosity to increase correctness
in end-user programming. In Proceedings of the
ACM SIGCHI Conference on Human Factors in
Computing Systems, pages 305–312, April 2003.

2

Barriers to Successful End-User Programming

Andrew Ko
Human-Computer Interaction Institute

School of Computer Science
Carnegie Mellon University

ajko@cs.cmu.edu, http://www.cs.cmu.edu/~ajko

In my research and my personal life, I have come to
know numerous people that our research community
might call end-user programmers. Some of them are
scientists, some are artists, others are educators and
other types of professionals. One thing that all of these
people have in common is that their goals are entirely
unrelated to producing code. In some cases,
programming may be a necessary part of accomplishing
their goals, such as a physicist writing a simulation in C
or an interaction designer creating an interactive
prototype. In other cases, programming may simply be
the more efficient alternative to manually solving a
problem: one might find duplicate entries in an address
book by visual search or by writing a short Perl script.

In either case, the fact that end-user programmers are
motivated by their domain and not by the merits of
producing high-quality, dependable code, means that
most of the barriers that end users encounter in the
process of writing a program are perceived as
distractions. This is despite the fact that such barriers
can represent fundamental problems in end-users’
program’s or their understanding of how to use a
programming language effectively.

Much of my research has focused on understanding
these barriers and how end users overcome them. When
are they insurmountable and why? What happens when
end users fail to overcome them? And how can tools
help end-user programmers’ improve their programs’
dependability, while allowing them to remain focused
on their goals, rather than their code?

Studies of Barriers

Some of my earlier investigations of these barriers
involved observations of non-programmers using the
Alice programming environment to create interactive
3D worlds (Ko and Myers 2005). Some of these
observations were done in the field, in the context of
teams of students, only one of which was programming,
and other observations were performed in a lab, with an
experimenter. There were several barriers that users
encountered that seemed fundamental to programming
and programming tools, and not just to Alice. For
example, premature commitment was a major problem
in numerous contexts: users were forced to make

decisions before they had enough information to do so
accurately. For example, they had to create an object
before they could write code to manipulate it. Or, when
a user was trying to diagnose their program’s failure,
they had to base their hypothesis of what caused the
failure just on what they could see in the program’s
output, rather than on information about the program’s
execution. In many of these situations, users premature
decisions led to errors.

These observations led to broader study, aimed at
classifying major barriers (Ko, Myers and Aung 2004). I
observed over thirty students learning to use Visual
Basic.NET to create simple form-based applications and
user interfaces. I attempted to document the barriers that
students encountered by telling them that they could
consult the teaching assistants with any problems they
felt they could not overcome. When consulted, the
teaching assistants recorded the problem that the student
was stuck on and the strategies that the student had used
to try to overcome it. After classifying all of the
different barriers that students encountered, there were
six major barriers that accounted for our data:

Design – Complex computational problems that users
were not trained to solve, such as sorting and searching.

Selection – Finding code, usually part of an API, that
produces a desired behavior, such as tracking time.

Use – Once some class, method, or data structure was
found, learning how to properly use its programming
interface, such as how to start and stop a timer.

Coordination – Learning rules about how entities can
communicate, such as how to send data between forms.

Understanding – Forming hypotheses about the
potential causes of a program’s behavior.

Information – Gathering information to test hypotheses
about the causes of a program’s behavior.

These six barriers accounted for all of the situations we
observed in our study, and we have continued to
observe them in other languages and tools.

Dagstuhl Seminar Proceedings 07081
End-User Software Engineering
http://drops.dagstuhl.de/opus/volltexte/2007/1091

The Whyline

In addition to studying the barriers that end user
programmers face, I have also attempted to lower them
with tools. The Whyline (Ko and Myers 2005) is aimed
at alleviating difficulties with the understanding and
information barriers described above, specifically for
the Alice programming environment. Essentially, it
allows users to choose some aspect of the program’s
behavior, such as a change to the color of some object
onscreen, and ask why and why not questions about it.
The Whyline then gives answers in terms of a causal
chain of events that caused or prevented the behavior to
occur. In a user study it was highly effective, reducing
debugging time by a factor of 8. The reasons for this
improvement were simple. By allowing users to reason
about the output of their program, it deferred the
premature formation of hypotheses about the causes of
the behavior until the Whyline provided information,
helping lower the understanding barrier. By providing
the information about the program’s execution
automatically, rather than having users gather it
manually, it almost entirely eliminated the information
barriers that we observed in our earlier study of Alice.

Future Directions

My studies of barriers in end-user programming
revealed many important problems to address, and the
Whyline demonstrates one example of addressing them.
However, not only are there many other barriers that
deserve attention, but the tools that we design to help
with each of these are influenced by a number of factors
for which we still have little knowledge.

For example, the generalizability of any end-user
software engineering tool depends greatly on the
similarity of the work contexts of the end users we
intend to design for. The Whyline was designed for a
single user; in a group context, where many people may
be involved in diagnosing and fixing a bug, the tool
suddenly has many shortcomings. Do end user
programmers work in groups? If they do, how is the
work divided? What information do they share?

Another issue that may vary across different work
contexts is the set of languages and applications with
which end users’ programs must interact. We might be
able to design tools for one language, but can we design
general tools to support Excel scripters interacting with
a proprietary internal company database? To what
extent do such setups actually occur for end users?

Although end-user programming language design has
received much attention in the past, there are still
several important issues to understand. For example, to
what extent must a language match the work that end-

users do? How can we help end users bridge the
expressive gap in the languages they use and the
behaviors they want to express? Because end users often
lack the training to create the abstractions necessary to
bridge these gaps, this will continue to be an issue.

Another software engineering issue that end users may
encounter are the long-term maintenance issues
common to commercial software development. We
frequently hear anecdotes about how a one-off excel
spreadsheet meant to be temporary became the
centerpiece of some accounting logic. How often do
such organizational dependencies occur, and how
important do such program’s become? What can tools
do to help the future owners of these programs learn
about the program’s history and design?

Finally, one challenge about end-user programming is
that end-user programmers needs may vary so widely
that we cannot design tools and languages general
enough, yet specific in their aid to help everyone. Do we
approach this problem by simplifying the creation of
end-user programming environments and creating
highly tailored languages on-demand, by helping end-
users bridge expressive gaps in a smaller number of
languages, or by some other means? What general
research contributions can we make and what specifics
do we have to leave to individuals and the market?

That we face so many complex issues is encouraging.
Not only does this mean that we have lots of interesting
work to do, but it also means that we are closer to
addressing real concerns. Let us continue to tackle them
with rigor and objectivity.

Acknowledgements

This work was funded in part by the National Science
Foundation (NSF) under grant IIS-0329090, the EUSES
consortium under NSF grant ITR CCR-0324770, and an
NDSEG fellowship.

References

Ko, A. J. and Myers, B. A. (2005). A Framework and
Methodology for Studying the Causes of Software Errors in
Programming Systems. Journal of Visual Languages and
Computing, 16, 1-2, 41-84.

Ko, A. J. Myers, B. A., and Aung, H. (2004). Six Learning
Barriers in End-User Programming Systems. IEEE Symposium
on Visual Languages and Human-Centric Computing, Rome,
Italy, September 26-29, 199-206.

Ko, A. J. and Myers, B. A. (2004). Designing the Whyline: A
Debugging Interface for Asking Questions About Program
Failures. ACM Conference on Human Factors in Computing
Systems, Vienna, Austria, April 24-29, 151-158.

Dependability in Web Software

Sebastian Elbaum, Marc Fisher II, Gregg Rothermel
University of Nebraska - Lincoln

{elbaum,mfisher,grother}@cse.unl.edu

1 Introduction

The web is an increasingly important platform used for a wide variety of tasks on a regular basis.
And as the web becomes more important, the ways in which it is used grows increasingly sophis-
ticated. End users build web pages and applications, use web applications in new and unexpected
ways and use web macro tools to automate web-based tasks. All of these tasks are error-prone. In
addition, they often depend on external components outside of the control of the developer or end
user. Therefore we have been developing tools and methodologies to assist users with these tasks.

One of our methodologies uses dynamic characterization of the web application interface to
assist the application builder in finding anomalous behavior in their applications and to help users
understand how they can access the application’s features.

In other work, we have attempted to improve the maintainability and robustness of web macros.
To do this we have developed a family of assertions that work with web macros to detect certain
types of erroneous or changed behavior in the uses of web applications and indicate to the user
when these assertions are violated so they can update the web macro accordingly.

2 Dynamic Characterization of Web Application Interfaces

Our early work in dynamic characterization of web applications was motivated by the use of existing
web applications in mashups, web applications that combine data from multiple sources for some
particular purpose [2]. This work included several static analysis methods to characterize certain
properties of the interfaces to web applications, as well as one dynamic method for identifying
mandatory and optional variables in the interface. The dynamic method operated by constructing
and submitting multiple requests with different combinations of variables present in these requests,
and characterized the result as either successful or unsuccessful. It was then able to use this
collected information to identify which variables were required in a successful request.

Further work extended this basic method to detect a wider array of properties in the interfaces
to a class of web applications we call specialized search engines [1, 3]. The new properties include
dependencies between variables, ranges of allowable values for variables, and relationships between
results for different values. We have applied our methodology to a variety of search applications
and found anomalous behavior in the majority of these applications.

1

Dagstuhl Seminar Proceedings 07081
End-User Software Engineering
http://drops.dagstuhl.de/opus/volltexte/2007/1089

3 Assertions in Web Macros

Robofox is a Firefox plug-in that allows users to program web macros by demonstration [4]. Since
web sites evolve over time (e.g., style, layout, flow) and these changes can cause faulty behavior
in executing macros or prevent the macros from executing at all, we have developed a family of
assertions within Robofox to detect and report anomalous run-time behavior to users.

As the user records a web macro, assertions are automatically created for each operation per-
formed. These assertions can then be viewed and edited by the user. When the macro is run,
these assertions are checked, and if any are violated, violations are reported to the user so that
appropriate changes to the web macro can be made.

4 Future Work

We are continuing to work on both the dynamic characterization and web macro assertion method-
ologies. For dynamic characterization, we are extending our methodology to cover other classes of
web applications beyond search. More specifically, we are currently looking at shopping carts and
product configuration applications. Within the web macro dependability area, we will be evaluat-
ing the usability and effectiveness of the approach, and we are considering and investigating other
dependability devices to assist in controlling the impact of a faulty macro.

References

[1] S. Elbaum, K.-R. Chilakamarri, M. Fisher II, and G. Rothermel. Web application characteriza-
tion through directed requests. In Proceedings of the 4th International Workshop on Dynamic
Analysis, pages 46–56, May 2006.

[2] S. Elbaum, K.-R. Chilakamarri, B. Gopal, and G. Rothermel. Helping end-users “engineer”
dependable web applications. In Proceedings of the International Symposium on Software Re-
liability Engineering, pages 31–40, November 2005.

[3] M. Fisher II, S. Elbaum, and G. Rothermel. Dynamic characterization of web application
interfaces. In Fundamental Approaches to Software Engineering, March 2007 (to appear).

[4] A. Koesnander and S. Elbaum. Robofox: Web activities automation, integration, and cus-
tomization. http://esquared.unl.edu/wikka.php?wakka=AboutRobofox, November 2006.

2

Designers Need End User Software Engineering
Mark D Gross, School of Architecture, Carnegie Mellon University

For many years I have been interested in how design works, and in how to support designers
doing design. Inspired by tools like Macsyma (and later Mathematica, etc.), I became interested
in building end-user languages and tools that are in a sense general-purpose systems and yet that
end users can tailor or customize to correspond to their own needs. Whether there are specific
structures and operations that are unique to design (across the disciplines, but distinct perhaps
from other kinds of problem solving) I do not yet know, but it seems at least plausible that
programming languages for design may have a special character. That question that has framed
much of my work.

My earlier work was on design as exploring constraints, and computational support for end user
designers to set up systems of constraints to describe, and then solve, problems couched in this
framework. Inspired by Sketchpad, CoDraw [1] was a end-user extensible constraint based
graphical editor (2D CAD system) in which every object was described as a collection of
relationships among its parameters. Although CoDraw provided a few primitive objects to seed
the system, end users could define new objects either by subclassing previously defined ones, or
by identifying variables and their relationships. A CoDraw end user could extend the system on

the fly, using a set of cards (each similar to a small
spreadsheet) to define objects in terms of their variables,
and relationships. Various graph display and editing
features allowed end users to specify part-whole and
sub/class relationships among objects in the system, to
trace dependencies among constraints and inspect
justification paths for derived values. As end users
added new objects and relationships to the system they
could also add items to tool palettes. In this system, end
users could extend and build up the underlying language
(a Lisp embedded constraint management system) as
well as the graphical user interface that was used to build
the CoDraw application.

Through experience with the CoDraw constraint based CAD system and its language, I learned
that the designers I worked with were unsatisfied with describing their knowledge in terms of
objects, variables, and constraints. They found even the menu and tool palette way of making
drawings stilted and difficult to use. They wanted to draw. This led me to begin work on the
Electronic Cocktail Napkin, a pen based freehand drawing system that is designed as an interface

for knowledge-based systems [2]. The
Napkin uses a symbol (glyph) recognizer
to identify the freehand strokes that the
designer draws. An end user trains the
glyph recognizer on the fly, adding new
symbols to the program’s repertoire or
showing the program new ways to draw
previously defined symbols. The same is
also true for more complex drawing
configurations: an end user builds up a

grammar (composed of previously defined glyphs and configurations) that corresponds to a
specific diagrams in a specific domain. The end user builds the grammar by demonstrating
examples of configurations; the Napkin program constructs a description of the relationships that

Dagstuhl Seminar Proceedings 07081
End-User Software Engineering
http://drops.dagstuhl.de/opus/volltexte/2007/1090

the user’s configuration contains and the user then adjusts this description by making it more or
less specific. These visual grammars may correspond to a specific knowledge domain (e.g.,
analog or digital electronics) or to a highly idiosyncratic way of using diagrams that is specific to
the end user (as, for example, graphic or architectural designers may be wont to do).

I have recently become interested in what kinds of tools and environments might be useful for
users who lack technical knowledge in programming or electronics to build working prototypes
of embedded (tangible, pervasive, ubiquitous) computing systems. To build even a prototype of
an embedded system may require expertise in programming, electronics (sensors and actuators),
as well as mechanical, physical, and materials design. Each of these domains can alone be
daunting and there are few designers who would be capable of managing the ensemble together.
End user programming environments for microcontrollers include traditional coding (e.g. in C or
Java) or visual languages (e.g., Scratch or Max/MSP). The electronics design similarly can
require sophisticated knowledge of components, their interactions; and finally the physical,
mechanical design demands that the end user master a 3D modeler, perhaps a kinematics
simulator, and so on. We would like to build a “design fusion” environment where a novice
programmer (a designer of embedded computing artifacts) can describe the set of desired
behaviors and functions, and construct and debug the software, electronics, mechanical, and
physical systems to implement these behaviors and functions. This design fusion environment
should be powerful (not limiting the designer to a trivial subset of possibilities) yet simple so as
to enable the designer to express the desired behaviors and functions without attending to
irrelevant low-level language details.

One point in this space is roBlocks [3], a ‘computationally enhanced construction kit’ that is
intended for young people to build simple robots out of blocks, without first demanding that they
learn electronics, programming, and the associated manual skills. RoBlocks consists of small
(40mm) cubes that snap together magnetically. Each block contains a microcontroller and
provides either a sensor, an actuator, or some arithmetic or logic. The blocks snap together to

make a robot, transmitting power and data from face to face. In this
way a novice user can assemble (in one move) both the physical
construction as well as the mechanics and programming necessary to
make the robot behave. For example, snapping a photosensor block
on a motor block would make a phototropic robot (that moves
toward light). Adding an inverter block between the two would
make a photophobic robot. We have built a small working set of
roBlocks and are currently considering how to build a next-level
screen-based language for users who have mastered the physical
programming level and would like to change the behaviors of
specific blocks.

1. Gross, M.D. Graphical Constraints in CoDraw. in Tanimoto, S. ed. IEEE Workshop on
Visual Languages, IEEE Press, Seattle, 1992, 81-87.

2. Gross, M.D. and Do, E.Y.-L. Drawing on the Back of an Envelope: a framework for
interacting with application programs by freehand drawing. Computers and Graphics, 24
(6). 835-849.

3. Schweikardt, E. and Gross, M.D., roBlocks: A Robotic Construction Kit for Mathematics
and Science Education. in International Conference on Multimodal Interaction, (Banff,
Alberta, 2006), ACM.

2

3

Empirical Studies in End-User Software Engineering and
Viewing Scientific Programmers as End-Users

-- POSITION STATEMENT --

Jeffrey Carver
Mississippi State University

carver@cse.msstate.edu

Abstract

My work has two relationships with End User

Software Engineering. First, as an Empirical Software
Engineer, I am interested in meeting with people who
do research into techniques for improving end-user
software engineering. All of these techniques need to
have some type of empirical validation. In many cases
this validation is performed by the researcher, but in
other cases it is not. Regardless, an independent
validation of a new approach is vital. Second, an area
where I have done a fair amount of work is in software
engineering for scientific software (typically written
for a parallel supercomputer). These programmers are
typically scientists who have little or no training in
formal software engineering. Yet, to accomplish their
work, they often write very complex simulation and
computation software. I believe these programmers
are a unique class of End-Users that must be
addressed

1. Introduction

In this position paper, I will address work in two
main areas related to End-User Software Engineering.
The first area, discussed in Section 2, is related to the
need for and use of empirical studies in End-User
Software Engineering. This section provides the
motivation for performing empirical studies, an
overview of the types of studies that can be useful, and
an example from my own experience.

The second area, discussed in Section 3, is related
to a class of users who are not always considered in the
discussion of End-User Software Engineering, the
scientists and engineers. I argue that these users are not
professional programmers, but rather they are a special
class of End-Users that deserve unique attention and
research.

2. Empirical Studies

The use of empirical studies is necessary in End-

User Software Engineering for the same reasons that it
is necessary in more traditional software engineering.
An empirical study provides a researcher with the hard
data necessary to make informed decisions, rather they
relying only on hype or argumentation. Different types
of empirical studies provide different types of
evidence. Choosing the appropriate study and the
appropriate evidence is important based on the goal of
the research inquiry.

There are two main types of empirical studies that
can be of use in this domain. Studies that are more
exploratory and studies that are more confirmatory. In
an exploratory study, the goal of the researcher is to
understand the environment. This understanding could
provide insight into identification of requirements for a
new tool or interface or identification of necessary
improvements in an existing interface. By gathering
information about how the target users perform the
task, the researcher can better understand the type of
interface or tool that will best serve them. In addition,
by observing users who are working with an existing
interface or tool, researchers can understand how that
tool or interface can be improved.

Software Engineering researchers have been doing
these types of studies for a long time. Our studies
focus on professional developers rather than end-users.
And, our goals are typically to better understand or
improve particular aspects of the software engineering
process. But, the approaches used in study design and
data analysis are similar to what is needed in the end-
user domain [3, 6].

One important aspect of empirical studies that I
believe I can offer to members of the EUSE
community is independence and objectivity. One
benefit of being independent, that is, not developing
the end-user technologies myself, is that I have no

Dagstuhl Seminar Proceedings 07081
End-User Software Engineering
http://drops.dagstuhl.de/opus/volltexte/2007/1079

vested interest in the outcome. One danger of a
researcher performing empirical validation on his or
her own tools or interfaces is that positive results are
viewed with some skepticism. Studies conducted by an
objective third party will lend additional validity to the
results.

My experience in this domain comes from
performing a series of experiments on the WYSIWYT
prototype in Excel [7, 8]. In our study, we were
interested in evaluating the use of WYSIWYT within
the Excel environment to understand how the results
from the Forms/3 environment translated. The goal of
the study was to determine whether people would
create a more correct, more tested spreadsheet when
using WYSIWYT than they would when using the
normal facilities provided by Excel [1].

In this study, the subjects were given the task of
creating a spreadsheet based on a provided
specification. They were instructed that their goal was
to make the spreadsheet as correct as possible. The
subjects were students in the Business Technology
department at Mississippi State University who were
taking a course on Spreadsheets. Therefore, they were
representative of novice spreadsheet users, which is an
interesting population for this study. The results of the
study indicated that, while the WYSIWYT add-in did
not improve overall correctness, it did decrease the
amount of time required to reach the same level of
correctness.

3. Scientists and Engineers as End-Users

High performance computing systems are used to

develop software in a wide variety of domains
including nuclear physics, crash simulation, satellite
data processing, fluid dynamics, climate modeling,
bioinformatics, and financial modeling. The TOP500
website (http://www.top500.org) lists the top 500 high
performance computing systems. The diversity of
government, scientific, and commercial organizations
present on this list illustrates the growing prevalence
and impact of HPC applications on modern society.
These software systems are largely developed by
experts in the scientific or engineering domain that is
being modeled. Therefore, they have little or no
training in formal software engineering.

This class of developers should be considered as a
special type of end-users for the following reasons.
First, they lack training in formal software engineering

and often lack the interest in following correct
software engineering principles. Second, for these
developers, the production of software is a secondary
goal. Their main interest is the science or engineering.
To accomplish their goal, they must often write
simulation code or computation code. While this code
may often be shared and used by others, it is not the
end goal of their work [2, 4, 5].

4. References

[1] Carver, J., Fisher II, M., and Rothermel, G. "An

Empirical Evaluation of a Testing and Debugging
Methodology for Excel". In Proceedings of 2006
International Symposium on Empirical Software
Engineering. Rio de Janeiro. Sept. 21-22, 2006, 2006. p.
278-287

[2] Carver, J., Hochstein, L., Kendall, R.P., Nakamura, T.,
Zelkowitz, M.V., Basili, V.R., and Post, D.,
"Observations about Software Development for High
End Computing." CTWatch, 2006. November: 33-37.

[3] Carver, J., Shull, F., and Basili, V.R., "Can Observational
Techniques Help Novices Overcome the Software
Inspection Learning Curve? An Empirical
Investigation." Empirical Software Engineering: An
International Journal, 2006. 11(4): 523-539.

[4] Carver, J., Kendall, R.P., Squires, S., and Post, D.
"Software Development Environments for Scientific
and Engineering Software: A Series of Case Studies". In
Proceedings of 2007 International Conference on
Software Engineering. Minneapolis. 2007. p.

[5] Hochstein, L., Nakamura, T., Basili, V.R., Asgari, S.,
Zelkowitz, M.V., Hollingsworth, J.K., Shull, F., Carver,
J., Voelp, M., Zazworka, N., and Johnson, P.,
"Experiments to Understand HPC Time to
Development." CTWatch, 2006. November: 24-32.

[6] Maldonado, J., Carver, J., Shull, F., Fabbri, S., Doria, E.,
Martimiano, L., Mendonca, M., and Basili, V.,
"Perspective-Based Reading: A Replicated Experiment
Focused on Individual Reviewer Effectiveness."
Empirical Software Engineering, 2006. 11(1): 119-142.

[7] Rothermel, G., Li, L., and Burnett, M. "Testing Strategies
for Form-Based Visual Programs". In Proceedings of
8th International Symposium on Software Reliability
Engineering. Albuquerque, NM USA: IEEE-CS. Nov.,
1997. p. 96-107

[8] Rothermel, G., Burnett, M.M., Li, L., DuPuis, C., and
Sheretov, A., "A Methodology for Testing
Spreadsheets." ACM Transactions on Software
Engineering and Methodology, 2001. 10(1): 110-147.

End User Programming for Scientists: Modeling Complex Systems

Andrew Begel

Microsoft Research

andrew.begel@microsoft.com

Towards the end of the 20th century, a paradigm shift took place in many scientific labs. Scientists

embarked on a new form of scientific inquiry seeking to understand the behavior of complex adaptive systems that

increasingly defied traditional reductive analysis. By combining experimental methodology with computer-based

simulation tools, scientists gain greater understanding of the behavior of systems such as forest ecologies, global

economies, climate modeling, and beach erosion. This improved understanding is already being used to influence

policy in critical areas that will affect our nation’s future, and the world’s.

Some computer tools enabled scientists to create models of phenomena from first principles, rather than

from descriptive differential equations. These tools, which directly modeled complex adaptive systems, significantly

lowered the mathematical burden required of scientists to understand and create models. Tools such as StarLogo

(Klopfer & Begel, 2003), Swarm (Minar, Burkhart, Langton, & Askenazi, 1996), and Repast (North, Collier, & Vos,

2006) enable scientists to program a simulation of a system by describing the behaviors of the individual elements of

the system (e.g. each animal eating another, each consumer purchasing a product, each molecule of air and particle

of cloud, and each grain of sand and drop of water). These tools reduce the barrier to entry by providing a

framework in which to develop models, but they require a degree of programming sophistication to accomplish even

relatively simple tasks. Swarm and Repast require the scientist to program in Objective-C and Java, respectively.

StarLogo reduces the barrier more than the others through its use of Logo, a more accessible language most often

associated with children’s programming projects. A more recent version of StarLogo, called TNG (Klopfer & Begel,

In Press), improves accessibility to non-programmers further by using a graphical programming language.

Modeling follows the scientific method: hypothesis, experiment creation, observation, evaluation, only

instead of studying a system in the real world, a model is created and studied instead. Rather than giving scientists

black-box models in which they can only study what they have been given, and only tweak knobs that the author

provided, the StarLogo programming environment enables scientists to be model designers and builders, by enabling

them to program the behaviors of the entities they want to interact with using the Logo programming language.

Programming is a means to an end, yet in order to enable scientists to model what they want to study, it is often the

only means.

We have used StarLogo to teach the scientific method and modeling to high school students. Through a

series of workshops, called Adventures in Modeling (Colella, Klopfer, & Resnick, 2001), high school students and

teachers (and school district technology coordinators) have learned what complex systems are, how to program in

StarLogo, how to model a complex system using StarLogo, and how to conduct scientific inquiries using the

StarLogo modeling environment. Participants work through a series of participatory activities, games that involve

the participant as one of the entities in a complex system. For example, in the majority-minority game, participants

must discover what the majority of the group has decided, secretly, about which color chile they like the best, green

or red. They can only move around while blindfolded, and whisper anything they like to whomever can hear them.

At the end of each round, a vote is taken to determine which chile is the best; and each participant must vote with

the choice they think the majority has chosen. The vote tallies initially begin quite divergent, but as the rounds

progress, a kind of positive feedback loop forms, with the majority winner being whispered more often, and winning

over more votes. Eventually, the majority dominates. The minority game is similar, but participants must pick the

chile that the minority of people like. Vote tallies in this game often fluctuate from one extreme to the other; as

participants hear more people saying one color chile, they pick the opposite, leading to an unstable dynamic that

never converges. After playing the game, participants learn to program it in StarLogo. They develop variants, and

run experiments to understand the behavior under different conditions, for example, greater or fewer people, no

blindfolds, communication louder than a whisper, or communication only by touch.

The StarLogo workshops were successful at teaching non-experts to program, and we have heard many

reports from scientists in many fields of study who have used StarLogo to model systems they were researchers.

However, we have found that StarLogo programming can be difficult to pick up, especially when learned on a

hobby basis, or without an instructor. Even worse, the longer a novice scientist goes between StarLogo

programming sessions, the less they retain, and the more apprehensive they get about creating their own models. It is

Dagstuhl Seminar Proceedings 07081
End-User Software Engineering
http://drops.dagstuhl.de/opus/volltexte/2007/1077

mailto:andrew.begel@microsoft.com

critical, however, for scientists to be able to design, build and conduct experiments in models that they build

themselves. Model creation cannot be turned over to a programmer-for-hire without causing the model to become a

black box. In order to ensure the validity of the model and stand behind its experimental results, the scientist must be

intimately knowledgeable about its innards as well as its outward behaviors.

Thus, it is important to understand how non-programmers pick up programming languages when the task

they want to complete cannot be accomplished in other ways. How does motivation drive learning in the absence of

teachers, or a community of learners, which is the usual model of learning to program in school? Unless the fidelity

of the finished model is quite high, even demonstrating the model to non-modeler audiences can prove difficult.

How are search engines used to provide sample code, explanations, and project ideas, especially when the software

modelers use is not widespread, or is new?

Learning a text-based programming language is difficult for novices who want to be programmers. In the

first few weeks of learning a language, syntax rules are often the most difficult to comprehend, with semantics

interleaved. Non-programmers face these problems, in addition to lacking an engineering mindset to help form

mental models of how they want to make the computer do what they want. How does learning graphical

programming languages like LabView, ProGraph or StarLogo TNG differ from learning text-based languages in this

context? Is the floor lower? Is the ceiling lower? Are the walls more narrow? Graphical languages have not achieved

popularity among computer scientists, but remain fashionable in educational settings. Is this making a difference?

Does exposure to programming prior to college enable non-programmer scientists to understand and create models

more easily?

How does one characterize an expert in a modeling language? When we, as computer scientists, see non-

programmers’ StarLogo programs, we might cringe at their inelegance. Yet, if the non-programmer is achieving

their modeling goals, then their program is effective and just as valid as an elegant one. Is it important to turn expert

non-programmers into proper engineers? Can experts teach other non-programmer novices properly? Does an

expert’s lack of formal instruction hinder their instruction or interfere with novice learning? Is it better or worse than

no instructor at all? What can be done to ensure that a model’s validity is not affected by poor programming? Can

automated tools help a non-computer-scientist see coding flaws and help him to fix them?

Understanding how non-programmer scientists attain and disseminate expertise in programming will help

us to design easier to use modeling environments that result in more understandable and maintainable programs. Our

goal is to enable all scientists, even the ones who are apprehensive about computer programming, to create and

study their own models of complex systems and use them in their research.

References

Colella, V., Klopfer, E., & Resnick, M. (2001). Adventures in Modeling: Exploring Complex, Dynamic Systems with

StarLogo. Teachers College Press.

Klopfer, E., & Begel, A. (2003). StarLogo in the Classroom and Under the Hood. Kybernetes , 32 (1/2), 15-37.

Klopfer, E., & Begel, A. (In Press). StarLogo TNG: An Introduction to Game Development. Journal of E-Learning .

Minar, N., Burkhart, R., Langton, C., & Askenazi, M. (1996). The Swarm Simulation System: A Toolkit for Building

Multi-Agent Simulations. Santa Fe: Santa Fe Institute.

North, M. J., Collier, N. T., & Vos, J. R. (2006). Experiences Creating Three Implementation of the Repast Agent

Modeling Toolkit. ACM Transactions on Modeling and Computer Simulation , 16 (1), 1-25.

End Users Creating More Effective Software
Brad A. Myers

Human Computer Interaction Institute
School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213-3891

bam@cs.cmu.edu
http://www.cs.cmu.edu/~bam

Presented at:

Dagstuhl Seminar on End-User Software Engineering
http://www.dagstuhl.de/07081/

February 19, 2007

Abstract:
End-User Software is created using a variety of different techniques and paradigms. The
“creating” part is defined as the process of representing the desired program in a
computer-understandable form, and entering that representation into the computer.
Programs can be represented using textual languages, visual (also called graphical)
languages, spreadsheets (which are often included as a type of visual language),
programming by example, or simple menu-based specifications. Textual languages range
from general purpose languages such as Java, to special purpose languages such as
StarLogo and MatLab for simulations and the HANDS language for kids, to
“programming” using English as in Metafor. There is also research on how tools can
make it easier to enter the text, such as the Alice syntax-directed editor. Visual
Programming languages use 2D as part of the meaning of the language, and systems from
members of the seminar include AgentSheets, Pursuit, Stagecast, StarLogo, and others.
Programming by Example systems watch as the users perform tasks, and use AI (in
particular, Machine Learning) to infer the program from the examples. Systems from
members of the seminar include Eager, Robofox, Mondrian, and Gamut. Finally, there
are some systems that allow limited customization of behaviors using menus and dialog
boxes, such as simple parameter tweaking, specifying the behaviors of the characters in
the Sims game, and drag-and-drop creation of dynamic web pages in CLICK. An
orthogonal issue for software creation is the programming paradigm, such as imperative,
event-based such as in Visual Basic and HANDS, functional such as in spreadsheets, and
constraint programming as in CoDraw. One goal for EUP is to create what we call
“gentle slope systems”, where it is easy to get started (“low threshold”), sophisticated
things can be done (“high ceilings”), and there are no barriers or walls where users must
stop and learn many new things before making progress.

Dagstuhl Seminar Proceedings 07081
End-User Software Engineering
http://drops.dagstuhl.de/opus/volltexte/2007/1093

de Souza, C. S. (2007) End-user (further) development … p. 1

End-user (further) development:
A case for negotiated semiotic engineering
Clarisse Sieckenius de Souza
Departamento de Informática, PUC-Rio
clarisse@inf.puc-rio.br

Semiotic engineering
Semiotics is a discipline devoted to studying signs and signification, which includes

processes of representation, interpretation, sense making, and – for a number of semioticians –
communication1. Its object of investigation is thus strongly connected with that of various sub-
areas of Computer Science such as: Artificial Intelligence, Human-Computer Interaction, and
even Theoretical Computer Science. In HCI, specifically, the most popular, although often
superficial and restricted, use of Semiotics has been the famous classification of signs into
icons, indices and symbols proposed by Peirce2. However, just as Cognitive Psychology has
the power to provide the foundations of full-fledged theories of HCI, so does Semiotics.
Semiotic Engineering3 is the first proposed theoretical account of HCI in general based on
semiotic theories (mainly Eco’s and Peirce’s).

The gist of Semiotic Engineering involves the following main concepts:
metacommunication, semiosis, signification and communication. All of them are familiar to
semioticians, and have not been originally proposed by Semiotic Engineering. What is new,
however, is how they can be put together to characterize and explain HCI, to generate HCI
research questions and methods, among which some related to end-user development. In fact,
EUD holds an important position in this theory for the reasons briefly presented in the
following paragraphs.

Metacommunication is classically communication about/of communication. Semiotic
Engineering views HCI as a specific type of metacommunication, a process where systems’
developers communicate to systems’ users how they (users) can/should communicate with the
system in order to achieve a particular range of intended effects. So, for example, if you are
using a text editor to write a position paper, you are in fact getting (and reacting to) the
developers’ message about all the things you can do with their software in order to create
great-looking documents. Of course this developer-to-user message is received progressively
by users, as they interact with the communicative agent that represents the developers at
interaction time: the system itself, or the designer’s deputy as we say in Semiotic Engineering
terms. Some important shifts of perspective follow from this. First, developers participate in
interaction (the system speaks for them), which represents a radical change compared to the
classical user-centered model of HCI4, for instance. The change does not take users out of the
scene. It includes designers/developers in it, and by so doing expands the topic of interactive
exchanges from tasks to design intent, rationale and value. Second shift, problem-solving and
cognition do not constitute the focus of investigation in this theory. Communication is the new
focus. Thus, problem-solving and cognition are only covered by the theory inasmuch as they
constitute the object or purpose of communication. Third shift, developers and users belong to
the same ontological category – they are interlocutors in computer-mediated communication.
To our knowledge, this is the only theory of HCI (and maybe one of the few, if not also the
only, theoretical account that can be used to characterize Software Engineering, in a broad

Short Position Paper for Dagstuhl Seminar 07081

Dagstuhl Seminar Proceedings 07081
End-User Software Engineering
http://drops.dagstuhl.de/opus/volltexte/2007/1083

de Souza, C. S. (2007) End-user (further) development … p. 2

sense) where software producers and software consumers, and their respective purposes and
activities, can be described in terms of the same ontology.

Semiosis is process through which we generate (interpretive) signs in the presence of
something that we take to stand for something else. For example, if you see this on a text page,
you are likely to take it to mean a hyperlink. So, in your process of interpretation you generate
other signs (i.e. things that, themselves, stand for various other things, to you). Among the
signs you generate in your interpretation it is very probable that you will have a sign
representing the expectation that when you put the mouse on the underlined blue text you see
 . This sign will be part of your interpretation of this unless your expectation fails. All the
 signs generated in this interpretive process are part of what the original (base) sign means
to you. Very importantly, they are subject to further revision, as the example shows. When
expectations or inferences are contradicted by current factual evidence, you change your
previous interpretation by generating other signs that accommodate the new information you
just acquired. This “generate-revise” interpretive process, described and defined by Peirce as
abduction5, is continuous, and so we say that semiosis is continuous, or unlimited over time.
Consequently, a semiotic theory of meaning, of Peircean breed, does not view meaning as a
static entity associated to representations, but as an ongoing process that includes unpredicted
and unpredictable signs. The fundamental role of semiosis in Semiotic Engineering is to
characterize more precisely the developers-users interlocution at interaction time. Although
both developers and users share the same interpretive capacities (that are species-specific for
Peirce), computer mediation introduces a radical reduction in the developers’ abilities to
communicate productively with users during interaction. The system, unlike human beings, is
not capable to carry on unlimited semiosis. Quite contrarily, it is in the nature of computer
representations that, for all practical purposes, they need grounding. An examination of the
semantics of computer programs can show the various pre-established meanings that
developers have associated to the interactive signs that users will be exposed to and will be
able to use in order to get the computer to exhibit various types of behavior. So, very briefly,
although developers and users are communicating to each other (through the system), and thus
are both interlocutors in the same conversation, computer mediation imposes an important
limitation for both parties. Developers must realize that they won’t have the usual unlimited
human capacity to explain and revise what they mean by the kinds of interaction they invite
users to have with the system they have designed. And users must realize that what they mean
to communicate to the system will only be understood (and effective) if it is consistent with a
pre-established range of meanings that have been encoded in it. Users can always explain and
will constantly revise (and expand) their meanings, of course. And this is the fundamental link
between Semiotic Engineering and End User Development.

Finally Semiotic Engineering uses two definitions from Eco’s Semiotics6: signification
and communication. Signification is the process by which certain contents are systematically
assigned to certain expressions as a result of deep and strong cultural conventions.
Communication is the process by which interlocutors explore the signification systems within
their reach in order to produce signs meant to achieve an unlimited range of purposes and
effects. They can not only pick up culturally established signs in the process, but they can also
(and extensively do so) invent new expressions and/or use the signification system in
innovative ways. The beauty of human communication is that just as sign producers are
prepared (and actually inclined) to express themselves innovatively, sign consumers are
equally well-equipped to interpret creative expressions, exactly because they are naturally

Short Position Paper for Dagstuhl Seminar 07081

2

de Souza, C. S. (2007) End-user (further) development … p. 3

born with the ability to think abductively. So, human communication is a negotiation of
meanings, where abduction plays a central role, allowing interlocutors to revise constantly
their assumptions and expectations about each other’s understanding and intent. For the
purpose of this discussion about EUD, Semiotic Engineering draws two important
consequences from these notions. One is that it is natural for users to use any computer-
encoded signification system in innovative ways. The other is that usable technologies must
necessarily support revisions of the computer-encoded signification systems they support7.

Designing at interaction time
Semiotic Engineering provides theoretical arguments to support what Liberman and

co-authors express in the opening chapter of End user development: “We think that over the
next few years, the goal of human-computer interaction (HCI) will evolve from just making
system easy to use (even though that goal has not yet been completely achieved) to making
systems that are easy to develop”8. Natural human communication is extensively innovative
compared to the expressions that can be systematically derived from any given signification
system. Innovation can focus on the expression side of the system (e.g. new expressions or
expressive modes can be used to convey well known content), on the content side (e.g. a well
known expression can be used to refer to a modified version of its previously known
corresponding content), or on both (e.g. new expressions can be instantly produced to signify
new content, or new expression/content correspondences can be created to achieve particular
effects in communication). Using innovative forms of communication always requires
additional interpretive efforts from interlocutors, who will typically engage in adbductive
reasoning processes to interpret what they are being told. However, the efficacy and efficiency
of communication can be very positively affected by precisely such innovations. At one end of
the spectrum, it is clear that without them no evolution (of culture, society, science, and even
personal lives) would be possible. At the other, it is also clear that communication constrained
by perfectly ordinary situational factors, such as lack of time or space, wouldn’t be possible
otherwise. For instance, if example worked for you, it’s because you undertand innovative
communication. If not, I need more time and space to explain it to you. But once you get
the idea, you will be able to use yourself to communicate things you mean.

To communicate is thus to design forms of expression that will effectively and
efficiently cause your intentions to be fulfilled. Some of the EUD-related challenges for HCI
within a Semiotic Engineering perspective are to: (i) let users communicate more naturally
(hence, more effectively and efficiently) with systems; (ii) let developers communicate more
effectively and efficiently to users the limitations imposed by computer mediation to their
mutual understanding; (iii) help developers design various ways computer-encoded
signification system manipulations that users can choose to explore interface languages in
order to communicate innovation; and (iv) develop theoretical concepts and models to explain,
characterize and expand the connections between HCI and EUD. Because the success of HCI
for Semiotic Engineering is measured by the developers’ ability to get their
metacommunication message across to users9, it is important that the gist of this message be
preserved at least as a reference for further developments. Revisions of meanings encoded in
an application’s signification system must not destroy the original developers’ message. Thus,
the kind of EUD that Semiotic Engineering is prepared to deal with only involves negotiating
meaning revisions with the designers’ deputy at interaction time. This particular case of EUD
might best be named end user further development.

Short Position Paper for Dagstuhl Seminar 07081

3

de Souza, C. S. (2007) End-user (further) development … p. 4

SERG’s related research publications
de SOUZA, C. S. ; BARBOSA, S. D. J. (2006) A semiotic framing for end-user development.

In: Henry Lieberman; Fabio Paternò; Volker Wulf. (Org.). End User Development:
Empowering people to flexibly employ Advanced Information and Communication
Technology. New York: Springer, 2006, v. 9, p. 401-426

de SOUZA, C. S. (2005) Semiotic engineering: Bringing designers and users together at
interaction time. Interacting with Computers. Vol. 17, n. 3, pp. 317-341.

BARBOSA, S. D. J., de SOUZA, C. S. (2001) Extending software through metaphors and
metonymies. Knowledge Based Systems. Vol.14, n.1-2, pp.15-27.

de SOUZA, C. S., BARBOSA, S. D. J., SILVA, S. R. P. (2001) Semiotic Engineering
Principles for Evaluating End-User Programming Environments. Interacting With
Computers. Vol.13, n. 4, pp.467-495.

BARBOSA, S. D. J. (1999). Programação via interfaces. [Title in English: Programming via
interface]. Ph.D.Thesis in Portuguese. Presentation: 23/12/1999. 109 p. Advisor:
Clarisse Sieckenius de Souza.

1 Eco, U. (1984) Semiotics and the philosophy of language. Indiana University Press.
2 Houser, N. and Kloesel, C. (Eds.) (1992-1998) The essential Peirce. Vols. I, II. Indiana University Press.
3 de Souza, C. S. (2005) The semiotic engineering of human-computer interaction. The MIT Press.
4 Norman, D. A. (1986) Cognitive Engineering. In User Centered System Design (Norman & Draper, Eds.).
Lawrence Erlbaum.
5 See note 2.
6 Eco, U. (1976) A theory of semiotics. Indiana University Press.
7 For a discussion about usability and creative use see Adler, P. & Winograd, T. (1992) Usability: Turning
technologies into tools. Oxford University Press.
8 Lieberman, H.; Parternò, F.; Klann, M.; Wulf, V. (2006) End-user development: An emerging paradigm. In
End-User Development (Lieberman, Paternò and Wulf, Eds.). Springer. p. 1.
9 Prates, R. O., de Souza, C. S., and Barbosa, S. D. 2000. Methods and tools: a method for evaluating the
communicability of user interfaces. interactions 7, 1 (Jan. 2000), 31-38.

Short Position Paper for Dagstuhl Seminar 07081

4

End-User Design
Prof. Dr. Alexander Repenning

University of Lugano

Problem
Are UML diagrams a good tool to teach middle school students how to make video
games? Probably not, but what kinds end-user design aids such as mental models,
scaffolding structures, examples or other kinds of objects to think we can we give to end-
users in order to gradually introduce them to good programming practice?

In the end-user programming arena the fundamental challenges have gradually shifted
from basic syntactic challenges towards semantic challenges including the need to
convey an understanding of design and engineering principles relevant to end-users.
Visual programming has significantly lowered the threshold of programming [1] mostly
by sharply reducing or even completely eliminating syntactic programming challenges.
Visual programming languages using drag and drop mechanisms as programming
approach make it virtually impossible to create syntactic errors. Even traditional text-
based end-user programming approaches nowadays provide useful tools such as syntax
coloring, symbol completion and wizards to reduce syntactic problems quite effectively.
With the syntactic challenge being – more or less – out of the way we can focus on the
semantic level of end-user programming.

At a semantic level the challenges ahead are substantially more complex. How can the
user explore what a program does or design a new program in a systematic way?
Programming languages including interactive debuggers such as Ruby, Lisp and
Smalltalk allow users to comprehend code gradually by allowing them to decompose
code into smaller code fragments such as individual methods that they could test in the
context. The comprehension problem is a hard one but still relatively simple compared to
the composition problem. If we have a specific problem in mind how do we think about
the problem? How do we gradually map the problem, using some form of programming,
to a solution? The “cursor is blinking in the upper left corner of an empty window”
problem is hard because we know next to nothing about the users’ intensions. Are they
trying to write a game or trying to solve a bookkeeping problem. How should they think
about the problem in general? All of this leads to the challenge of end-user design.

Our Work
From systems perspective we have explored the notion of tactile programming [5] as
means to make program comprehension and composition more concrete. Any piece of
code can be tested and explained through an explanation generator interpreting a program
and presenting in to the user. These explanations include specific representations of what
function parameters means and even how their actual values should be interpreted. We
have also explored knowledge-based approaches to computer supported program
synthesis [4]. Programming by Analogous Examples has used small semantic annotation
provided by the user to enable very high-level reuse.

Dagstuhl Seminar Proceedings 07081
End-User Software Engineering
http://drops.dagstuhl.de/opus/volltexte/2007/1099

From a pedagogical perspective we have tried to convey design thinking using a design
scaffolding processes. Our Gamelet design [2] approach provides a couple of concrete
design stepping stones and game design patterns to turn a game idea description into a
running game. Using AgentSheets [3] and AgentCubes [1] we have employed variants of
the approach in education. At the university level we have graduate and undergraduate
computer science students using a version of the Gamelet design process including UML
diagrams to build sophisticated games. At the middle school level we successfully
experimented with more informal versions of the Gamelet design approach. This work
has resulted in the world most compact game design course in which middle school
children build for instance a simple Frogger game in very little time.

Challenges
Our initial efforts into end-user design suggest that it is possible to create semi-formal
approaches to convey design knowledge to end-users. However, we feel that we are only
at an early beginning and wonder if there is a more general science of end-user design.
• Can we create useful end-user design methods by scaling down existing design and

engineering methods?
• Could – and should – there be something like an end-user UML diagram or and end-

user pattern?
• Would we just be dumbing down real design issues and loose all value (e.g., The Idiots

Guide to Software Design & Engineering)?
• If we make clever tools such as natural language problem statement parsers that would

automatically create finished games would the users still be able to gain design
knowledge?

References
[1] Repenning, A. and Ioannidou, A., AgentCubes: Raising the Ceiling of End-User

Development in Education through Incremental 3D. in IEEE Symposium on Visual
Languages and Human-Centric Computing 2006, (Brighton, United Kingdom, 2006), IEEE
Press.

[2] Repenning, A. and Lewis, C., Workshop: Gamelet Design for Education. in Annual Games,

Learning & Society Conference (GLS 2006), (Madison, Wisconsin, 2006).

[3] Repenning, A. and A. Ioannidou 2005. What makes End-User Development Tick? 13 design

guidelines. End-User Development. F. Paterno and V. Wolf. Dordrecht, Kluwer.

[4] Ioannidou, A., Programmorphosis: a Knowledge-Based Approach to End-User

Programming. in Interact 2003: Bringing the Bits together, Ninth IFIP TC13 International
Conference on Human-Computer Interaction, (Zürich, Switzerland, 2003).

[5] Repenning, A., and J. Ambach, "Tactile Programming: A Unified Manipulation Paradigm

Supporting Program Comprehension, Composition and Sharing," Proceedings of the 1996
IEEE Symposium of Visual Languages, Boulder, CO, Computer Society, 1996, pp. 102-109.

End-User Development Techniques
for Enterprise Resource Planning Software Systems

Michael Spahn, Stefan Scheidl, Todor Stoitsev

SAP AG, SAP Research CEC Darmstadt, Bleichstr. 8, D-64283 Darmstadt
{michael.spahn, stefan.scheidl, todor.stoitsev}@sap.com

Abstract. The intent of this position paper is to present the focus of interest of our end-user develop-
ment (EUD) related research at SAP Research CEC Darmstadt, enabling other participants of the
Dagstuhl seminar concerning end-user software engineering to prepare for fruitful and constructive
discussions. As we are in an early phase of research, research topics will be presented rather than de-
tailed results. We focus on investigating and applying EUD techniques suitable for enterprise re-
source planning (ERP) software systems, especially for small and medium-sized enterprises (SMEs).
Our current research addresses the sub-domains of workflow management and business intelligence.

1 Customization of ERP systems

One dilemma of developing ERP software systems is to develop systems being on one hand generic
enough to be used by a broad variety of companies and on the other hand offering solutions that match
the concrete reality of a company as close as possible. As a consequence ERP systems are highly custom-
izable, causing a long and costly implementation phase, involving external experts and consultants, which
have to deal with the domain knowledge of users and adapt the software according to existing needs and
processes. Since companies are not static and competitors, markets and customers are always on the
move, influencing the strategies, products, services and processes of a company, a continuous need for
adaptation exists which is not limited to the implementation phase of ERP software. End-users of ERP
systems are domain experts but not necessarily IT professionals, limiting their ability to adapt the soft-
ware by themselves to their own needs and forcing them to indirectly influence the adaptation processes
by communicating their needs to IT professionals. Empowering the end-users to adapt the software by
themselves is an important step in reducing customization costs and enabling high-quality tailoring of
software and working environments to the needs of modern information and knowledge workers. EUD
defined “as a set of methods, techniques, and tools that allow users of software systems, who are acting
as non-professional software developers, at some point to create, modify or extend a software artifact” [1]
may deliver significant ideas of how to improve the evolutionary process of adapting ERP systems to
changing company and user needs.

2 EUDISMES

Currently we are involved in the EUDISMES (End User Development in Small and Medium Enterprise
Software Systems) project lead by Prof. Dr. Wulf of Siegen University and funded by the German Fed-
eral Ministry of Education and Research (BMBF) to further investigate EUD techniques. Focusing small
and medium-sized enterprises (SMEs) aggravates the need for sophisticated EUD techniques. Large en-
terprises usually have a high management expertise and fine grained, standardized processes, which sim-
plifies the adoption of predefined ERP processes and contents. In contrast to large enterprises SMEs have
more human centric and less rigid processes. Having less financial resources and IT expertise, many
SMEs fear the challenge of ERP implementation, operation and maintenance. As described in [2] we see
good opportunities for applying EUD techniques in ERP systems for SMEs, especially in the sub-
domains of managing agile workflows and business intelligence applications.

Dagstuhl Seminar Proceedings 07081
End-User Software Engineering
http://drops.dagstuhl.de/opus/volltexte/2007/1097

2.1 Creating and Managing Workflows

To achieve transparency and efficiency in the execution of business processes they are modeled and
automated as workflows involving the routing of tasks and related documents and information. In addi-
tion to an initial implementation of processes, the dynamics of market requirements necessitates an ongo-
ing adaptation of business models and hence workflow models. Although various visual tools provide an
appealing user interface, the complexity of process (re-) engineering still exceeds the capabilities of most
end users. At the same time, classical workflow systems are too rigid for many users, in particular knowl-
edge workers, tackling complex processes with significant deviations from case to case.

As organizations seek to leverage their skilled people, reduce training time and support end-to-end
workflow across all aspects of the business, application software now needs to be designed for the indi-
vidual. Gartner has coined this people-process intersection the “process of me” [3]. End-user develop-
ment tools can help to increase the adaptability of workflow systems to individual work practices. Tech-
niques such as programming by example can help to overcome the separation between design- and run-
time, giving the possibility of and confidence in successful system control back to end users.

2.2 Customizing Business Intelligence Applications

Business Intelligence (BI) applications are tools for analyzing data for the purpose of providing relevant
information to enable better and faster business decisions. This purpose of BI applications turns every
employee in a potential consumer of BI applications. Since the details of business decisions are specific
to each company, their processes and the user context, there is no complete analytic application out of the
box. Companies spend a huge amount of time and money on the customization and extension of commer-
cial BI products to deliver business relevant information to the user in his work context in a business-
user-oriented and easy-to-use way. Since the work of modern information and knowledge workers tends
to consist of more and more non-routine, cognitive, analytic and interactive tasks, users have to be em-
powered to find, explore, process and analyze the data they need in the situation they want in an intuitive
and user-friendly way. To meet their information needs, users create or adapt suitable informational arti-
facts, like reports or queries, confronting them with a huge information space of available data and tech-
nical details of data storage and querying. Ideally, users should be able to develop BI artifacts, like que-
ries, reports or key performance indicators, by only using business concepts and terminology provided by
an appropriate abstraction layer hiding technical details and reflecting only business relevant data entities
and their relations. Related research addresses the question of how to build such abstraction layers on top
of complex ERP systems, how to allow end-users to navigate huge information spaces, how to easily
orchestrate queries in a descriptive way and how to enable end-users to interactively explore and analyze
data to effectively improve speed and quality of business decisions.

3 Literature

[1] H. Lieberman, F. Paterno and V. Wulf: “End-User Development“, Springer, Dordrecht, 2006.
[2] A. Roth, S. Scheidl: “End-User Development for Enterprise Resource Planning Systems“ in Workshop “End

User Development“ at “Informatik 2006“, Dresden, Germany, 2006.
[3] Gartner: “Business Application Vendors Face Challenge to Move to 'The Process of Me'”, 2006

(http://www.gartner.com/it/page.jsp?id=492897, accessed on Jan. 15, 2006)

End-user Programming of Ambient Narratives

Mark van Doorn
Media Interaction
Philips Research

mark.van.doorn@philips.com

1. INTRODUCTION
Ambient Intelligence is a vision on the future of consumer
electronics, telecommunications and computing in which de-
vices move into the background while at the same time plac-
ing the user experience in the foreground. Ambient intelli-
gence is related to ubiquitous computing, pervasive com-
puting but has a stronger connection to human computer
interaction and design. Technically, Ambient Intelligence
refers to the presence of a digital environment that is sen-
sitive, adaptive, and responsive to the presence of people
[1]. Producing Ambient Intelligent environments on a large
scale is problematic however. First, it is technologically not
possible in the foreseeable future to mass produce a prod-
uct or service that generates Ambient Intelligence, given the
current state-of-the-art in machine learning and artificial in-
telligence. Second, it is economically not feasible to man-
ually design and produce Ambient Intelligence applications
for each person individually. One of the main research ques-
tions in creating such environments is the design of a system
capable of supporting mass customization of ambient expe-
riences.

To address this research question an iterative top-down and
bottom-up approach has been followed to gradually narrow
down the solution space. The reason for adopting a top-
down, analytical view was that it is easy to get lost in the
wide variety of prototype systems, scenarios and examples
that can be found in literature or gathered by doing empir-
ical studies with end-users. The bottom-up, empirical view
is necessary to ensure that any analytically derived concept
is supported in practice, backed up by real world evidence.
By repeatedly switching between these two perspectives, the
concept is refined and eventually the design shaped.

2. BACKGROUND
The goal of Ambient Intelligence is to help people in per-
forming their daily activities better, by making these activi-
ties more convenient and enjoyable: by introducing interac-
tive media. Notice the word ‘performing’ in this description.
In order to understand where and how Ambient Intelligence
can be applied to support these performances, it is neces-
sary to develop a better insight into what performances are
and what it means to perform. Because performances vary
so widely from medium to medium and culture to culture,
it is hard to pin down an exact definition for performance.
Schechner defines performance as “ritualized behavior con-
ditioned/permeated by play” or “twice-behaved behavior”
[9]. When people are performing, they show behavior that

is at least practiced once before in a similar manner. In
traditional performance arts this behavior can be detected
easily: Actors in a theatre play, opera or movie rehearse
their roles off-stage and repeat this behavior when they are
on stage. But this twice-behaved behavior can also be seen
in a priest conducting a wedding ceremony, a surgeon oper-
ating on a patient or a McDonald’s service employee behind
the counter. Pine and Gillmore [8] argue how we live in an
experience economy where work is theatre and every busi-
ness a stage. In our own homes, we show signs of repeated
behavior. This happens for example during everyday rit-
uals, like brushing your teeth in front of a mirror in the
morning, watching a soccer match with friends, or, coming
home from work in the evening. Note that, here, the sending
and receiving party in a ‘performance’ may be the same.

Viewing life as social theater is interesting for us for two
reasons: First, if people behave according to social scripts,
we can codify interactive media applications to support peo-
ple in carrying out these scripts. Just as lighting and sound
effects add to the overall drama of a theater play, Ambient
Intelligence may thus be applied to enhance the performance
described by these social scripts. Second, positioning Ambi-
ent Intelligence in performance theory gives us a well-studied
and familiar frame of reference for the design of Ambient In-
telligence environments and the underlying technology.

To model media-enhanced performances in the home and
commercial service encounters in a machine understandable
way, we choose to represent the structure and interrelation-
ships of a set of related media-enhanced performances as an
interactive or episodic narrative. Interactive narratives al-
low readers to affect, choose or otherwise change the plot
of a story [7]. Most interactive narratives are situated ei-
ther in the real world (e.g. live-action role playing games,
improvisational theater) or in some virtual reality (e.g., hy-
pertext novels, computer games). Another difference is that
these media-enhanced performances are not really ‘read’ like
a book or hypertext novel, but enacted like a theater play.
We introduce the term ambient narratives to denote dra-
matic, interactive narratives that play in a mixed reality set-
ting. We can look at ambient narratives from a consumer
(reader) point of view or a producer (writer) perspective.
From a reader point of view, interaction with the ambient
narrative creates the perception of an intelligent surround-
ings. Interaction should be taken very broadly here as an
ambient narrative can span both virtual and physical dimen-
sions at the same time. Media-enhanced performances in

Dagstuhl Seminar Proceedings 07081
End-User Software Engineering
http://drops.dagstuhl.de/opus/volltexte/2007/1075

different rooms may be linked to each other in one narrative
structure, allowing people to influence the plot of the ambi-
ent narrative (the evolving Ambient Intelligence) by simply
walking around for example. From a writer’s perspective,
the ambient narrative describes all possible media-enhanced
performances and their interrelationships. Real-life environ-
ments are however highly complex and constantly changing
so it is almost impossible for a producer to write ambient
narratives for a given space in advance. Therefore end-users
should be able to program their own ambient narratives.

The ambient narrative concept in itself is useful because
it relates media, architecture and performance but in or-
der to build a working system, we need to map the con-
cept in a machine readable form. The underlying computer
model and algorithms are inspired by interactive storytelling
and hypertext systems such as [5, 10]. Essentially, implicit
contextual information derived from sensors in the envi-
ronment and explicit user feedback is fed into an interac-
tive storytelling engine that will determine which media-
enhanced performance scripts must be (de)activated given
the database of scripts and the state of the ambient nar-
rative engine. Each script consists of a preconditions part
and an action part. If a script is selected and the precondi-
tions are valid, the action is executed. Each action consists
of three parts: an initialization, main and final part. The
main part contains a description of a distributed hyperme-
dia presentation in AmBX [2], a language and system used
for enhancing game experiences with lighting and other am-
bient effects. The initialization section is used to set story
values or triggers for other scripts before the amBX script is
started. The final section gives the author the possibility to
define story values or triggers that are executed right before
the script is becoming inactive again. More information can
be found in [4].

3. EVALUATION AND FUTURE RESEARCH
The ambient narrative concept and language model needs to
be validated against the requirements placed by real world
applications. To get a better notion of the type of language
constructs needed, we performed a literature study where
we analyzed existing scenarios, storyboards and prototype
systems focused on the home and retail domain. The retail
(and hospitality) domain is interesting in particular because
no retail space is the same as each store wants to convey
its own unique brand image. Furthermore, stores frequently
change their collections. From this literature study we found
that frequently appearing context paramaters are the loca-
tion and identity of people, devices and objects, user roles
and history.

To test the ambient narrative system we further made a
prototype and refactored an intelligent shop window envi-
ronment in ShopLab, the feasibility and usability laborato-
rium at the High Tech Campus in Eindhoven, to see if a
typical ambient intelligent application would fit the model.
The intelligent shop window reacts to the presence of users
depending on their distance to the window and adapts its
interaction style accordingly: When nobody is close, the
transparent displays convey the style of the store by show-
ing brand images. When a person stands directly in front,
the transparent display switches to interaction mode. The
person can then point or look at products in the shop and

receive additional information about that product on the
shop window, see Figure 1. We managed to map this ap-
plication onto the ambient narrative model but found out
we needed to filter out noise from the sensor data to make
the system stable. Furthermore, some bypasses around the
ambient narrative engine had to be made so that high fre-
quency context data such as gaze input or pressure floor
data could be fed directly to the devices if the device had
gained focus by the narrative engine.

Figure 1: Touch interaction with the shop window
display.

Currently, we are in the process of working out several dif-
ferent authoring strategies that allow end-users, in our case
retail experience designers to quickly program environments
such as the intelligent shop window. Several different pro-
gramming strategies have been proposed in literature (e.g.
desktop-based, in-situ, programming by example) e.g. [3,
11, 6] for ubiquitous computing environments. But in a se-
ries of workshops with designers of retail spaces we hope to
collect qualitative feedback on which strategy they prefer
when and see in how far they can think in the ambient nar-
rative mental model. Finally, these end-user programming
strategies need to be evaluated in ShopLab.

4. REFERENCES
[1] E. Aarts and S. Marzano, editors. The New Everyday:

Views on Ambient Intelligence. 010 Publishers, 2003.

[2] amBX. http://www.ambx.com/.

[3] R. Hull, B. Clayton, and T. Melamed. Rapid Authoring of
Mediascapes. In UbiComp ’04, 2004.

[4] M. van Doorn and A. P. de Vries. Co-creation in Ambient
Narratives. Lecture Notes in Computer Science: Ambient
Intelligence for Everyday Life, (3964), 2006.

[5] M. Mateas and A. Stern. Facade: An Experiment in
Building a Fully-Realized Interactive Drama. In Game
Developer’s Conference: Game Design Track, San Jose,
California, 2003.

[6] T. McNerney. From turtles to Tangible Programming
Bricks: explorations in physical language design. Personal
and Ubiquitous Computing, 8(5):326–337, September 2004.

[7] J. Murray. Hamlet on the Holodeck: The Future of
Narrative in Cyberspace. MIT Press, 1998.

[8] J. Pine and J. Gillmore. The Experience Economy. Harvard
Business School Press, 1999.

[9] R. Schechner. Performance Studies: An Introduction.
Routledge: New York, 2002.

[10] P. Stotts and R. Furuta. Petri-net-based hypertext:
document structure with browsing semantics. ACM
Transactions on Information Systems, 7(1):3–29, 1989.

[11] M. Weal, D. Michaelides, M. Tompson, and D. D. Roure.
The Ambient Wood Journals - Replaying the Experience .
In ACM Hypertext, Nottingham, UK, 2003.

End-User Software Engineering and Professional End-User Developers

Judith Segal

j.a.segal@open.ac.uk

Professional end-user developers
By the term ‘professional end-user developers’ is meant professionals working in a
highly technical, knowledge-rich domain who develop their own software in order to
further their professional work. I have conducted empirical studies of such
developers working in the domains of financial mathematics ([1], [2]), earth and space
sciences ([2], [3]), and, currently, structural biology. These developers are
distinguished from other end-user developers in two ways. The first is that, consistent
with their being familiar with formal notations and logical scientific reasoning, they
tend to have few problems with coding per se. The second is that, as a class, they
have a history of developing their own software which long predates the advent of the
PC.

My empirical studies reveal that professional end-user developers work within a
culture which, while recognising that software failure can have devastating
consequences, nevertheless does not appear to value the knowledge, effort and skill
required for software development. There is a widespread perception that software
development is something that ‘anyone can do’ – it is regarded as just part of the
armoury of skills that all such professionals are considered to have, or to be able
easily to acquire (it was compared to glass-blowing by one earth scientist). The
studies also demonstrate that professional end-users typically develop software in a
highly iterative manner and requirements largely emerge, rather than being specified
upfront.

In common with many other types of end-user development, professional end-user
development is generally regarded as simply being a matter of coding. The
consequence of this is that the products of professional end-user development can
often be less than robust, and the underlying code is not written with a view to being
comprehensible or easy to modify and maintain. This is especially problematic as
software originally intended for individual, exploratory use might later be used by
other scientists and take on a more formal role within the organisation.

Some problems of professional end-user development
The culture of professional end-user development poses some significant problems
such as:

1. How does the professional end-user developer acquire the software
development knowledge that it is assumed that ‘everybody’ has (or can easily
acquire)? One exacerbating factor is the reluctance of some professional end-
user organisations to expend resources on formal training. Another is that the
community of practice of professional end-user developers can be small in any
particular organisation and is inherently unstable. Those research scientists
who develop software tend to be on short-term contracts and/or at the
beginning of their careers. In the latter case, as they advance up their career
ladder, they are likely to concentrate on their scientific endeavours, leaving
others to develop their software for them. In either case, their knowledge of
software development becomes lost to the community.

 1
Dagstuhl Seminar Proceedings 07081
End-User Software Engineering
http://drops.dagstuhl.de/opus/volltexte/2007/1095

mailto:j.a.segal@open.ac.uk

2. How can awareness that software development is more than merely coding,
become embedded in the culture of professional end-user development? If
this awareness were so embedded, then the quick construction of a piece of
software that appears to address the domain problem at hand (rather than
expending more resources on the construction of software which is robust and
maintainable) would be the result of a conscious decision rather than the
unthinking norm, as at present.

How might these problems be addressed?
There are various suggestions in the end-user literature as to how the product of end-
user development might be improved. These suggestions include: end-user
developers should adopt a software development methodology; software engineers
might provide professional end-user developers with a library of customisable
components, and the professional end-user developers themselves should develop
some sort of library of reusable customisable components.

Each of these suggestions requires some change in work culture and practices. Given
that such changes are very difficult to effect and especially so where software
development is not the main focus of the organisation, I argue in [3] that we should
‘cherry pick’ methods, tools and practices which have proved effective in the context
of professional software development and which support – or only slightly perturb –
the way that professional end-user developers work naturally. Given the additional
difficulty that professional end-user developers have in acquiring and sharing
knowledge of software development, I argue that we should also look for methods,
tools and practices which tend to strengthen their community of practice.

Agile methods appear to be a likely source of practices etc. which both support the
way professional end-users currently develop software and strengthen the community
of practice. However, the effect of the introduction of agile practices into a
professional end-user developer community is still to be investigated.

References
[1] Segal J., 2001, ‘Organisational Learning and Software Process Improvement: A

Case Study’, in Advances in Learning Software Organizations, K-D Althoff,
R.L. Feldmann, W. Muller (Eds.), Lecture Notes in Computer Science, Vol.
2176, Springer, 68-82.

[2] Segal, J.,2005, ‘Two principles of end-user software engineering research’,
Proceedings of the 1st Workshop on End User Software Engineering, WEUSE,
International Conference of Software Engineering, St. Louis Missouri, May
2005.

[3] Segal J., 2005, ‘When software engineers met research scientists: a case study’,
Empirical Software Engineering, 10, 517-536.

 2

 1

End-User Software Engineering Position Paper
Henry Lieberman

MIT Media Laboratory
20 Ames St. 384A

Cambridge, MA 02139 USA
lieber@media.mit.edu

PERSONAL WORK
My goal is to make the process of programming easier,
especially for people who are not necessarily specialists in
computer science. Why is it so much harder to program a
computer than simply to use a computer application? I can’t
think of any good reason why this is so; we just happen to
have a tradition of arcane programming languages and
mystically complex software development techniques. We
can do much better.

My background is in Human-Computer Interface and
Artificial Intelligence, and my methodology is to use ideas
from these fields to improve the situation. HCI has amassed
an enormous body of knowledge about what makes
interfaces easy to use, and this has been applied widely to
many computer applications for end users. Oddly, little of
this has been applied to making interfaces for programming
easier to use. Non-experts tend to believe that programmers
practice a kind of voodoo, perceived to be naturally arcane
and mysterious. Since they can handle it so well,
programmers aren’t perceived as needing ease of use. But
we all pay the price for this misconception.

Programming is the art of teaching new behavior to a
computer. It’s really the same problem as machine
learning, which is where AI comes in. I believe the route to
making programming easier is to make the computer
smarter, make it capable of learning, and capable of
accepting direction in the way that users feel most
comfortable expressing it.

To that end, I’ve been exploring the following topics,
among others:

Programming in Natural Language
Programming languages are a stumbling block for most
beginning programmers. Why not just express what you
want in English? Many believe this goal to be infeasible,
but natural language understanding has made vast progress
in recent years. We can use partial understanding, mixed
initiative dialog models, and Commonsense reasoning to, at
least partially, express procedural ideas in natural language
[5]. I’ve also explored several ideas in Visual
Programming, since some things are best expressed in
pictures rather than words.

Programming by Example
People learn and teach best by example. But conventional
programming languages require you to express procedures
in the abstract, rather than through examples. I’d like to see
the ability to demonstrate examples in concrete situations,
have the system record them, and generalize them to yield a
procedure capable of working on analogous examples. I’ve
made several systems in this area, and edited a book [2].

Figure 1: Metafor Natural Language Programming system

Debugging
I think the most pressing need in software development is
not programming per se, but debugging. Programmers
spend roughly half their time debugging, but debugging
tools have hardly improved since the earliest days of
computing. I’ve worked on several innovative reversible,
graphical debuggers, based on ideas from diagnostic
reasoning in AI. [1]

I’ve been exploring the idea of end-user debugging [3],
what one might call “debugging without programming”.
The idea is that even when ordinary application use fails to
meet the expectations of users, they could fruitfully use
debugging techniques to discover what went wrong.

Dagstuhl Seminar Proceedings 07081
End-User Software Engineering
http://drops.dagstuhl.de/opus/volltexte/2007/1092

END-USER DEVELOPMENT AND SOFTWARE
ENGINEERING
My book [4], edited with Fabio Paterno and Volker Wulf, I
think, provides a comprehensive, and up-to-date survey of
the state of the art and future directions in this area. One of
the big successes of the book, I believe, was to bring
together the community of people who are working to make
programming easier for beginners, such as children, with
people from Software Engineering who are trying to move
some of their techniques into the realm of less expert users.
This workshop, of course, continues that interdisciplinary
effort.

For the book, we chose the title End-User Development,
rather than “Software Engineering”, though the concerns
were pretty much the same as this workshop. Software
Engineering has a lot to contribute in terms of bringing
design methodology, collaborative programming, testing,
maintenance, and other larger concerns to programming for
less expert users. But I think we still have a problem
positioning this effort with respect to conventional Software
Engineering. For the book, I was worried that a too-close
association would scare off beginning and casual users.

I commend the bravery of the workshop organizers for
reaching out to the SE community. Traditional Software
Engineering is really largely about the management and
organization of large software projects in industry.
Sometimes they are not so sympathetic to efforts to make
programming easier, because you don’t want to make it too
easy to modify a large software project. The risk of errors
or miscoordination is too great. Reliability and efficiency
sometimes trump ease of development, for applications like
banks and airline reservations. The approaches advocated
by SE are much too heavyweight for beginning users –
bureaucratic design methodologies, abstract formal
verification – at least, without some radical rethinking.

I think the ideal to shoot for, first, is to maximize ease of
getting started in the beginning. Program development
should be as informal, flexible, lightweight, agile, and
dynamic as we can possibly make it. Formal
methodologies be damned. If we can do this, we can make
programming accessible to millions of people who are now
scared to death of it.

But as programs (or their developers) mature, some of the
legitimate concerns of Software Engineering do indeed
come into play, even for nonprofessional users. Programs
may then need to be maintained, tested, extended, shared
with others, etc., in which case Software Engineering
techniques could potentially yield benefits. But we
shouldn’t just, as conventional SE does, wag our fingers at
the users, “Ya shoulda done it right in the first place”.

I think our challenge is to figure out how to smoothly go
from the initial conception of a project, vague and
imprecise at it must necessarily be, to only gradually

introduce more structured representations and abstract
tools, all the while without placing undue burdens on the
user. To do this, I think we have to give up the idea of a
single representation for programs, be it a programming
language or something else.

I also think that this process of solidifying a program should
be reversible, so that any point, one can return to the more
informal forms without needless loss of effort. This will
encourage the user to learn new insights from the process of
software development without feeling like they get stuck by
their sunk investment in an initial approach.

Finally, as much as is possible, we should make this process
as automatic as we can, though the use of program
transformation, dependency maintenance, automated
reasoning, mixed-initiative interfaces, visualization, and
machine learning. Otherwise, I think it will be too much
overhead for a non-expert user themselves to keep track of
the myriad facets that software development entails. If we
succeed in this, people will become End-User Software
Engineers without their even realizing it.

REFERENCES
Most of these references can be found at:

http://www.media.mit.edu/~lieber/Publications/Publications

.html

1. H. Lieberman, ed. Special Issue on The Debugging

Scandal, Communications of the ACM, April

1997.

2. H. Lieberman, ed., Your Wish is My Command:

Programming by Example, Morgan Kaufmann,

2001.

3. E. Wagner and H. Lieberman, End User

Debugging for Electronic Commerce, ACM

Conference on Intelligent User Interfaces, Miami

Beach, January 2003.

4. H. Lieberman, F. Paterno and V. Wulf, eds. End-

User Development, Springer Academic Publishers,

2006.

5. H. Lieberman and H. Liu, Metafor: Visualizing

Stories as Code, ACM Conference on Intelligent

User Interfaces (IUI-2005), San Diego, January

2005

Exploiting Domain-Specific Structures For
End-User Programming Support Tools *

— Position Paper —

Robin Abraham Martin Erwig
Oregon State University

1. PROGRAMMING LANGUAGE
RESEARCH FOR SPREADSHEETS

In previous work we have tried to transfer ideas that
have been successful in general-purpose programming lan-
guages and mainstream software engineering into the realm
of spreadsheets, which is one important example of an end-
user programming environment. More specifically, we have
addressed the questions of how to employ the concepts of
type checking, program generation and maintenance, and
testing in spreadsheets. While the primary objective of our
work has been to offer improvements for end-user produc-
tivity, we have tried to follow two particular principles to
guide our research.

(1) Keep the number of new concepts to be learned by end
users at a minimum.

(2) Exploit as much as possible information offered by the
internal structure of spreadsheets.

In the following we will illustrate our research approach with
several examples.

The idea behind the UCheck system [8] is to interpret the
labels in a spreadsheet as annotations akin to type decla-
rations in traditional programs. By identifying rules that
express how labeled cells can be combined in formulas in a
meaningful way, the information about cell labels can then
be exploited to check the consistency of spreadsheet formu-
las [13]. To make this approach feasible we needed a way to
automatically infer the information about which labels are
to be used as type information and which cells are annotated
by which labels [1], because a tool that required a spread-
sheet user to annotate a spreadsheet with this information
would probably not be very widely used due to the high ad-
ditional cost involved. We have also begun to investigate
ways to infer from the inconsistent use of labels in formulas
suggestions for changes in formulas that can be reported to
the end user [3].

We have also investigated a different approach to type
checking that is based on the traditional notion of types,
extended by a concept of formula shapes [6]. In addition
to finding errors in spreadsheets, this approach can also be
used to infer spreadsheet models, an aspect to be discussed
below.

A strong point about the type checking approaches is that
they operate fully automatically—all an end user has to do

∗This work is partially supported by the National Science
Foundation under the grant ITR-0325273 and by the EUSES
Consortium (http://EUSESconsortium.org).

is to click a button, and sources of potential errors are found
and highlighted instantly. At the same time, this advantage
can also mean a drawback since end users might rely too
much on the system, in particular, they might assume that
their spreadsheet is correct when UCheck does not report
an error, not knowing or ignoring the fact that automatic
type checking cannot be complete in the sense of finding
all errors in a program. Therefore, other methods to find-
ing errors are needed to complement automatic type check-
ing. One example is the WYSIWYT approach, invented by
Rothermel, Burnett, and others [15], which supports end
users with systematically testing their spreadsheets. An im-
portant objective of testing is to achieve sufficient coverage
of the program being tested. Supporting the user in finding
test cases attaining high coverage is the goal of automatic
test case generators.

We have developed one such tool called “AutoTest” [4],
which generates test suites that obtain 100% DU-coverage
(for reachable code). This is an improvement over a previ-
ous approach, “Help Me Test”, that was developed for the
WYSIWYT framework [14]. AutoTest is also considerably
more efficient than Help Me Test.

Once a user has identified through testing that a cell con-
tains a wrong value, the next problem is to find out where
the error is located in the spreadsheet and how to correct
it. To this end, we have developed a method called “goal-
directed debugging”, or “GoalDebug”, which asks the user
for a correct value for that cell and then computes a ranked
list of suggested changes for formulas, each of which would
cause the specified target value to be computed [2]. These
changes can be automatically applied, which eliminates a
whole class errors introduced by end users during the edit-
ing of formulas. Using a systematic study based on mutation
testing, we have found that GoalDebug consistently presents
the correct changes among the most highly ranked sugges-
tions [7].

While all the previously mentioned approaches try to de-
tect errors, the goal of the Gencel system [11] is to prevent
the introduction of errors into spreadsheets. The system is
based on a concept of templates that capture the potential
evolution of a spreadsheet over time. Changes to spread-
sheets, such as insertion and deletion of (groups of) rows
and columns are controlled by these templates that ensure
the formulas will always be adjusted correctly. In fact, we
can prove that spreadsheets maintained by Gencel based on
these templates are always free from type, range, and ref-
erence errors [12]. Templates have a visual representation
that is almost identical to the notation known to end users

Dagstuhl Seminar Proceedings 07081
End-User Software Engineering
http://drops.dagstuhl.de/opus/volltexte/2007/1086

from spreadsheets [9] and can be created using a visual ed-
itor. We have also developed a method to infer templates
from existing spreadsheets, which facilitates the use of Gen-
cel for legacy spreadsheets [5]. The templates inferred by
our system have been judged by experts to be better than
those developed by novice and even expert users. We have
extended the Gencel model to include more high-level mod-
eling features while still retaining its visual attractiveness.
The resulting ClassSheets model [10] also allows the integra-
tion of spreadsheet modeling into the UML modeling pro-
cess.

All of our approaches to improve the quality of spread-
sheets essentially exploit in some way or another the

• simplicity of the spreadsheet language, and
• embedding of computations in a spatial grid.

These two aspects allow the reasoning to be (a) simple
enough because complicated language features, such as re-
cursion and nested scope, need not be addressed and (b)
supported by the spatial structure exhibited by the arrange-
ment of cells.

2. FUTURE RESEARCH
Research for general-purpose languages has been quite

successful and has produced important results from which
most professional programmers benefit today. An example
are the sound type systems now to be found in mainstream
programming in languages, such as Java.

We have demonstrated with UCheck that it is indeed pos-
sible to bring the benefits of tools successfully employed
in general-purpose languages to the realm of spreadsheets.
Similarly, the Gencel/ClassSheets systems show that the
idea of high-level modeling, as known from UML, can be
employed successfully in the spreadsheet domain.

These experiences suggests as a successful strategy for fu-
ture research:

Redesign methods known from general-purpose
languages for end-user programming domains
by exploiting application-specific structures and
practices.

In the spreadsheet domain, the spatial layout of cells entails
the practice of end users to place closely related items in the
same area, or in the same row or column. It is this combina-
tion of spatial structure and corresponding user practice that
lets tools like UCheck or GoalDebug work so well. There-
fore, identifying and exploiting such links might be a key
step in designing successful end-user programming tools.

Example areas for new potential spreadsheet tools to be
investigated are refactoring, version control, and use cases,
to name just a few.

We believe that the successful transfer of concepts also
requires a critical mass of researchers working in that area,
which is currently hardly the case. Therefore, a second goal
should be the following.

Persuade programming language and software
engineering researchers to participate in the de-
velopment of tools for end-user programming.

The three most relevant papers are the following.

• UCheck, JVLC 2007 [8]
• Gencel, JFP 2006 [12]
• GoalDebug, ICSE 2007 [7]

3. REFERENCES
[1] R. Abraham and M. Erwig. Header and Unit Inference

for Spreadsheets Through Spatial Analyses. In IEEE
Int. Symp. on Visual Languages and Human-Centric
Computing, pages 165–172, 2004.

[2] R. Abraham and M. Erwig. Goal-Directed Debugging
of Spreadsheets. In IEEE Int. Symp. on Visual
Languages and Human-Centric Computing, pages
37–44, 2005.

[3] R. Abraham and M. Erwig. How to Communicate
Unit Error Messages in Spreadsheets. In 1st Workshop
on End-User Software Engineering, pages 52–56, 2005.

[4] R. Abraham and M. Erwig. AutoTest: A Tool for
Automatic Test Case Generation in Spreadsheets. In
IEEE Int. Symp. on Visual Languages and
Human-Centric Computing, pages 43–50, 2006.

[5] R. Abraham and M. Erwig. Inferring Templates from
Spreadsheets. In 28th IEEE Int. Conf. on Software
Engineering, pages 182–191, 2006.

[6] R. Abraham and M. Erwig. Type Inference for
Spreadsheets. In ACM Int. Symp. on Principles and
Practice of Declarative Programming, pages 73–84,
2006.

[7] R. Abraham and M. Erwig. GoalDebug: A
Spreadsheet Debugger for End Users. In 29th IEEE
Int. Conf. on Software Engineering, 2007. to appear.

[8] R. Abraham and M. Erwig. UCheck: A Spreadsheet
Unit Checker for End Users. Journal of Visual
Languages and Computing, 18(1):71–95, 2007.

[9] R. Abraham, M. Erwig, S. Kollmansberger, and
E. Seifert. Visual Specifications of Correct
Spreadsheets. In IEEE Int. Symp. on Visual
Languages and Human-Centric Computing, pages
189–196, 2005.

[10] G. Engels and M. Erwig. ClassSheets: Automatic
Generation of Spreadsheet Applications from
Object-Oriented Specifications. In 20th IEEE/ACM
Int. Conf. on Automated Software Engineering, pages
124–133, 2005.

[11] M. Erwig, R. Abraham, I. Cooperstein, and
S. Kollmansberger. Automatic Generation and
Maintenance of Correct Spreadsheets. In 27th IEEE
Int. Conf. on Software Engineering, pages 136–145,
2005.

[12] M. Erwig, R. Abraham, S. Kollmansberger, and
I. Cooperstein. Gencel — A Program Generator for
Correct Spreadsheets. Journal of Functional
Programming, 16(3):293–325, 2006.

[13] M. Erwig and M. M. Burnett. Adding Apples and
Oranges. In 4th Int. Symp. on Practical Aspects of
Declarative Languages, LNCS 2257, pages 173–191,
2002.

[14] M. Fisher, G. Rothermel, D. Brown, M. Cao, C. Cook,
and B. Burnett. Integrating Automated Test
Generation into the WYSIWYT Spreadsheet Testing
Methodology. ACM Trans. on Software Engineering
and Methodology, 15:150–194, 2006.

[15] G. Rothermel, M. M. Burnett, L. Li, C. DuPuis, and
A. Sheretov. A Methodology for Testing Spreadsheets.
ACM Transactions on Software Engineering and
Methodology, pages 110–147, 2001.

Gender HCI Issues in
End-User Software Engineering Environments

Laura Beckwith, Margaret Burnett, and Susan Wiedenbeckα

Oregon State University αDrexel University
Corvallis, OR, USA Philadelphia, PA, USA
{beckwith, burnett}@eecs.oregonstate.edu susan.wiedenbeck@cis.drexel.edu

INTRODUCTION
Until recently, research has not considered whether the de-
sign of problem-solving software, such as spreadsheets,
multimedia authoring languages, and CAD systems, affect
males and females differently. As a result, we began inves-
tigating how the two genders are impacted by problem-
solving software and whether attention to gender differences
is important in the design of software. Evidence from other
domains, such as psychology and marketing (see [Beckwith
and Burnett 2004]), strongly suggests that females process
information and problem solve in very different ways than
males do. This implies that without taking these differences
into account in the design of problem-solving software, the
needs of half the population for whom the software is in-
tended are potentially being ignored. In fact, some research
has shown that software is unintentionally designed for
males.

To consider this issue, we are empirically investigating end
users engaged in end-user software engineering activities, to
inform the design of software to support end-user program-
mers of both genders.

METHOD
Our method for conducting this investigation consists of
four steps: (1) draw from theory and previous gender differ-
ence empirical work from other domains—such as computer
confidence, perceived risk, information processing, comput-
ing gaming, and technology adoption models—to hypothe-
size gender issues and their causes that could arise from gen-
der-based differences in the use of problem-solving software
[Beckwith and Burnett 2004], (2) use empirical methods to
investigate whether these issues do actually arise in prob-
lem-solving software, (3) use the results of the first two
steps along with qualitative empirical work involving low-
cost prototyping to derive and refine approaches to address
the issues, and (4) use quantitative empirical methods to
evaluate the effectiveness of the approaches.

We have conducted four studies investigating gender differ-
ences relevant to end-user software engineering environ-
ments. Three of these are summarized here; more detail on
the series of studies can be found in [Beckwith et al.
2006b].

EMPIRICAL EVIDENCE – SELF-EFFICACY
Guided by literature and early exploratory analyses, we per-
formed a quantitative investigation of the impact of self-
efficacy (a form of confidence) and gender on users’ use of
end-user testing and debugging features while debugging a
spreadsheet [Beckwith et al. 2005]. The results of that study
showed how these differences in self-efficacy negatively
impacted acceptance of the features by females, and showed
that the reduced feature acceptance can significantly reduce
females’ effectiveness at problem solving. More specifi-
cally:

• Females’ self-efficacy was predictive of their effectiveness
at using the debugging features, which was not the case
for the males. See Figure 1. Thus, the (many) low self-
efficacy females were unlikely to use the features, but the
(few) low self-efficacy males were as likely to use the fea-
tures as the high self-efficacy males were.

• Females were less likely than males were to accept the
new debugging features (unfamiliar to all participants
prior to the experiment). One reason females stated for
this was that they thought the features would take them
too long to learn—but there was no difference in the
males’ and females’ learning of the new features.

• Although there was no gender difference in fixing the
seeded bugs, females introduced more new bugs—which
remained unfixed. This is probably explained by low ac-
ceptance of the debugging features: high effective usage
of the features was a significant predictor of fixing bugs.

Figure 1. Females’ (light) self-efficacy was a significant
predictor of their effective use of the “check-off” feature, as

the positively sloping line shows. For the males (dark),
however, this was not the case.

Dagstuhl Seminar Proceedings 07081
End-User Software Engineering
http://drops.dagstuhl.de/opus/volltexte/2007/1076

QUALITATIVE EVIDENCE – FEATURES & MOTIVATION
A think-aloud study [Beckwith et al. 2006b] provided con-
firmatory evidence of females’ beliefs and perceptions that
seem tied to their avoidance of the debugging features. The
experiment also revealed an interesting difference in the
ways features were perceived by males and females. For
example, female F2, in using the “guards” feature (akin to
Excel’s “data validation”), said:

F2: “I don’t think that you can get a -5 on the
homework. No, it can’t be. So 0 to 100 [is the
guard I’m entering], ok. Ok, hmm… So, it
doesn’t like the -5 [...]. They can get a 0,
which gets rid of the angry red circle.”

In contrast to F2’s focus on the guard feature as a way to
get her spreadsheet to work correctly, the following male’s
initial focus was on the feature itself:

M3: “The first thing I’m going to do is go
through and check the guards for everything,
just to make sure none of the entered values are
above or below any of the ranges specified. So,
homework 1—actually, I’m going to put
guards on everything because I feel like it. I
don’t even know if this is really necessary, but
it’s fun.”

Despite his initial interest in the feature for the fun of it,
the male soon transitioned to its problem-solving advan-
tages and was able to find and fix a bug with the aid of the
feature. His use of guards because “it’s fun” led us to the
next study, investigating the role of exploratory investiga-
tion (or tinkering) as a manner of becoming comfortable
with the features and environment.

EMPIRICAL EVIDENCE – TINKERING
In this quantitative study [Beckwith et al. 2006a], we origi-
nally anticipated that males’ propensity to tinker (playfully
experiment) would benefit their problem solving. However,
we found that even small differences in the environments
had big impacts on how gender and tinkering interacted and
affected debugging effectiveness. More specifically:

• As in previous research, males tinkered more than females
but, surprisingly, males’ tinkering was often counterpro-
ductive to their effectiveness in debugging.

• One factor in the above result was the fact that the low-
cost variant of the spreadsheet environment led some
males to engage in unproductive, repeated tinkering,
which was linked to poor understanding.

• Although they tinkered less, females’ tinkering was effec-
tive: it was significantly tied to understanding and to suc-
cessfully testing and debugging, regardless of environ-
ment. However, when tinkering in the more complex en-
vironment, females’ tinkering was predictive of lower
self-efficacy.

• Tinkering with pauses allows for reflection and was help-
ful to everyone, but females were more likely than males
to pause.

The essence of these results is depicted in Figure 2.

The implications are that designers should look for ways to
encourage females’ tinkering. Still, care must be taken to
avoid at the same time encouraging males’ tinkering further,
since males’ tinkering tended to be excessive and, when this
was the case, was counterproductive.

SUMMARY
These results are being used to experiment with new ways
software designs can counteract these effects. The outcomes
of these experiments can provide the knowledge required to
design future environments to better allow end-user pro-
grammers of both genders to succeed at end-user software
engineering tasks.

REFERENCES
[Beckwith and Burnett 2004] Beckwith, L. and Burnett, M.

Gender: An important factor in end-user programming
environments? IEEE Symp. Visual Languages and Hu-
man-Centric Computing Languages and Environments,
Sept. 2004, 107-114.

[Beckwith et al. 2005] Beckwith, L., Burnett, M., Wieden-
beck, S., Cook, C., Sorte, S., and Hastings, M. Effective-
ness of end-user debugging features: Are there gender is-
sues? ACM Conf. Human Factors in Computing Systems,
April 2005, 869-878.

[Beckwith et al. 2006a] Beckwith, L., Kissinger, C.,
Burnett, M., Wiedenbeck, S., Lawrance, J., Blackwell,
A., and Cook, C. Tinkering and gender in end-user pro-
grammers’ debugging. ACM Conf. Human Factors in
Computing Systems, April 2006, 231-240.

[Beckwith et al. 2006b] Beckwith, L., Burnett, M.,
Wiedenbeck, S., and Grigoreanu, V. Gender HCI: What
about the software? IEEE Computer, Nov. 2006, 83-87.

Figure 2. Males’ and females’ tinkering affected their de-
bugging effectiveness, but in essentially opposite ways.
Direction of stylized arrows depicts increase/decrease in a

measure, and shaded arrows show significance of the regres-
sion relationships between measures.

Shaw: Confidence Strategies for End Users 1

Helping Everyday Users Establish Confidence
for Everyday Applications

Mary Shaw
Institute for Software Research, School of Computer Science

Carnegie Mellon University, Pittsburgh PA
mary.shaw@cs.cmu.edu

January 2007

Abstract
End users obtain their desired results by combining elements of information and computation
from different applications. Software engineering provides little support for identifying, selecting,
or combining these elements – that is, for helping end users to design computational support for
their own tasks. Software engineering provides even less support to help end users to decide
whether the resulting system is sufficiently dependable –whether it will meet their expectations.
Many users, especially end users, base judgments about software on informal and undependable
information, and they draw conclusions with informal rather than rational decision methods. We
have been developing support for everyday dependability, with an emphasis on expressing
expectations in abstractions familiar to the user and on obtaining software behavior that
reasonably satisfies those expectations. In this Dagstuhl I would like to explore the differences
between everyday informal reasoning and the rational processes of computer science in order to
develop means for establishing credible indications of confidence for end users.

Everyday Dependability for Everyday Users
“Dependability” is an overarching property of software systems that includes, to various viewers
and to various extents, elements of correctness, reliability, fault-tolerance, performance, security,
usability (without surprises), robustness, accuracy, and numerous other properties. Everyday
dependability provides enough assurance to carry out ordinary activities. Everyday software
systems may be undependable, but the consequences of that undependability are not catastrophic,
a human will probably notice and intervene before the effects spread, and the number of people
affected is modest. For everyday software, it is generally not difficult to recover from failures.
Everyday users are not computing professionals; they create small software systems from
available information and computing elements, they use abstractions drawn from their problem
domains, theybare ill-equipped to evaluate the elements they use, and they are often mystified by
the behavior and requirements of their software. We focus on their design and use of suites of
these information and computing elements elements, applications, data sources, web pages, and
other distribugted content rather than on correct programming within an application.
Within my group,
• Orna Raz explored dependability of online data feeds. The semantics of these data feeds

sometimes goes awrt\y, but different users are sensitive to erroneous values to different extents.
Raz developed a technique for end users to describe their individual expectations about a data
feed and to translate those expectations to predicates that could monitor the data feed
dynamically and adapt themselves to certain kinds of gradual systematic change in the data
feeds.

• Vahe Poladian is exploring ways to provide users of mobile devices with the most satisfactory
service given the limited resources of the device. Using a “task level” abstraction, he selects a

Dagstuhl Seminar Proceedings 07081
End-User Software Engineering
http://drops.dagstuhl.de/opus/volltexte/2007/1096

Shaw: Confidence Strategies for End Users 2

sequence of suites of applications that can perform the sequence of tasks planned by the user.
Using models of resource availability and the resource consumption of candidate applications,
he chooses the configurations that will lead to the best expected value of the user’s utility.

• Chris Scaffidi is exploring abstractions that support the activities of specific identified groups
of end user programmers. He refined Boehm’s estimate of the number of end user programmers
and collaborated with Information Week on a survey that suggested three distinct types of end
users based on the kinds of abstractions they use (interestingly, they clustered by type of
abstraction, not by type of application). He is developing a technique for helping users create
data abstractions that correspond to the users’ problems, to reformat the information as required
by applications, and to express the degree of confidence a user should justifiably have that a
value satisfies the expected abstraction.

Everyday Decisions
Everyday users do not have rich and robust mental models of their computing systems: they fail
to do backups, misunderstand storage models (especially local and network storage), execute
malware, and innocently engage in other risky behavior. The responses of computer science to the
mismatch between computing systems and users’ models has been to attempt to simplify the
systems and to seek ways to help the users act “rationally”. I hope to explore two aspects of this
discrepancy at Dagstuhl.
First, we rely on “high ceremony” techniques (formal verification, systematic testing, empirical
studies) for reasoning about correctness and dependability of systems. Everyday users have
available a great deal of “low ceremony” evidence (reviews, reputation, informal experience, …)
that is of variable accuracy and credibility. Nevertheless, many decisions are based on this sort of
evidence. Can we find ways to track and manage the justifiable confidence in this evidence and to
draw conclusions that are adequate for decisions about everyday software?
Second, psychologists have established that human decision-making does not adhere to rules of
rational deduction, statistical analysis, and abstract reasoning about general cases. Rather, human
decisions are very strongly shaped by examples, by cases that come easily to mind, and by
similarity with experience. Simple linear models of a few inputs often out-perform even human
experts, and there is some evidence that visual displays help with reasoning about probabilities.
Can we find ways to accommodate typical human decision strategies in software design
decisions, using some of the established techniques for improving informal reasoning and
providing explicit indications of confidence in the results?

Acknowledgements
The work reported here is currently supported in part by the National Science Foundation (ITR-
0325273) via the EUSES Consortium, by NSF Grants NSF-CCF-0438929, NSF-CNS-0613823,
and NSF-CCF-0613822, and by the A.J. Perlis Chair of Computer Science at Carnegie Mellon
University. The work was done in collaboration with Brad Myers, Vahe Poladian, Orna Raz, and
Chris Scaffidi, and it has had the benefit of feedback from members of the EUSES Consotrium.

References
Vahe Poladian, Joao Pedro Sousa, David Garlan, and Mary Shaw. Dynamic Configuration of
Resource-Aware Services. Position paper for ICSE-2004, 26th Int"l Conf on Software
Engineering, Edinburgh, Scotland, May 2004, pp.604-613
Orna Raz, Rebecca Buchheit, Mary Shaw, Philip Koopman, and Christos Faloutsos. Automated
Assistance for Eliciting User Expectations. International Conference on Software Engineering
and Knowledge Engineering (SEKE"04), Banff, Canada, June 2004, pp. 80-85.

Shaw: Confidence Strategies for End Users 3

Chris Scaffidi, Andrew Ko, Brad Myers, and Mary Shaw. Dimensions Characterizing
Programming Feature Usage by Information Workers. VL/HCC‘06: Proceedings of the 2006
IEEE Symposium on Visual Languages and Human-Centric Computing, pp. 59-62, 2006.
Chris Scaffidi, Mary Shaw, and Brad Myers. Games Programs Play: Obstacles to Data Reuse.
Position paper for 2nd Workshop on End User Software Engineering (WEUSE), at the
Conference on Human Factors in Computing Systems (CHI), 2006, unpaginated.
Chris Scaffidi, Mary Shaw, and Brad Myers. Estimating the Numbers of End Users and End User
Programmers. VL/HCC’05: Proceedings of the 2005 IEEE Symposium on Visual Languages and
Human-Centric Computing, 2005, pp. 207-214.
Joao Pedro Sousa, Vahe Poladian, David Garlan, Bradley Schmerl, and Mary Shaw. Task-based
Adaptation for Ubiquitous Computing. in IEEE Transactions on Systems, Man and Cybernetics -
Part C: Applications and Reviews, Vol. 36, No. 3, May 2006, pp. 328-339.

Interdisciplinary Design Research for End-User Software Engineering

Alan Blackwell

Dagstuhl seminar on End User Software Engineering, February 2007

My research style involves constantly drawing comparisons from one field to another – across
academic disciplines, and also across application domains. In these terms, End-User Software
Engineering is neither an application domain, nor an academic discipline, but a technological
attitude or strategy, applicable in many domains, while also profiting from many research
methods and theory bases. In this respect, it is an ideal opportunity for the multi-disciplinary
enquiry and analogical comparisons on which I habitually base my own research [1].

The phrase "end-user software engineering" itself relies on an analogy, in the sense that software
engineering is a professional discipline, whereas the end-users whom we hope to assist are
defined precisely by the fact that they are not professionals (at least, not software professionals).
Our aim in this research is to identify those techniques within software engineering that might
offer most benefit to end-users, potentially including tools for specification, debugging, revision
management and so on.

As a teacher of professional software engineering, I often draw on the experience of other
professional fields, especially design disciplines such as architecture, typography and
performance composition [2]. There are certain recurring themes across these design disciplines
that I have found to offer substantial insights to professional software engineering. I believe that
these same themes can also be productive sources of innovation, by making new analogies to end-
user software engineering. In the remainder of this statement, I reflect on some of these analogies.

Design takes place in a social context, and is a social process. Our studies of end-user
configuration and automation of domestic technologies demonstrate the extent to which family
relations and gender roles spill over into practices of end-user programming [3].

Design processes involve modeling – simplifying or abstracting some aspects of the problem
domain in order to plan and evaluate design decisions. The use of representations to reason about
future consequences is fundamental to end-user software engineering. The constraints that
representations place on design activities are described by the cognitive dimensions of notations
framework [4], and in turn by a great variety of research into visual representations.

Abstract reasoning about the future can be described in terms of the attention investment model
[5]. A productive approach to end-user software engineering is to modify users' perception of this
investment, whether by Burnett's Surprise-Explain Reward strategy, or by the use of machine
learning techniques to infer possible abstractions that might be suggested to the user [6].

Finally, I am interested in the extent to which all designers experience their work as creative. This
experience should be available to end-users too, not only creative professionals. In studies of
choreographers and musicians, my students and I research and develop new notations and
programming languages that offer artistic experiences to their users [7]

Many of these activities extend well beyond the bounds of software engineering, empowering
users to control and enhance their computer tools in new ways. This was the same motivation that
led to the innovations of the modern graphical user interface [8], and I believe that EUSE
research might well transform the general purpose user interfaces of the future.

Dagstuhl Seminar Proceedings 07081
End-User Software Engineering
http://drops.dagstuhl.de/opus/volltexte/2007/1078

References and Further Reading

1. Blackwell, A.F. and Good, D.A. (in press). Languages of innovation. To appear in H.
Crawford & L. Fellman (Eds.). Artistic Bedfellows: Collaborative History and Discourse.
University Press of America.

2. Blackwell, A., Bucciarelli, L, Clarkson, P.J., Earl, C.F., Eckert, C., Knight, T., Macmillan, S.,
Stacey, M. and Whitney, D. (2005). Comparative study of design - application to engineering
design. Presented at International Conference on Engineering Design.

3. Rode, J.A., Toye, E.F. and Blackwell, A.F. (2005). The domestic economy: A broader unit of
analysis for end user programming. In proceedings CHI'05 (extended abstracts), pp. 1757-
1760

4. Blackwell, A.F. and Green, T.R.G. (2003). Notational systems - the Cognitive Dimensions of
Notations framework. In J.M. Carroll (Ed.) HCI Models, Theories and Frameworks: Toward
a multidisciplinary science. San Francisco: Morgan Kaufmann, 103-134.

5. Blackwell, A.F. (2002). First steps in programming: A rationale for Attention Investment
models. In Proceedings of the IEEE Symposia on Human-Centric Computing Languages and
Environments, pp. 2-10.

6. Blackwell, A.F. (2001). SWYN: A Visual Representation for Regular Expressions. In H.
Lieberman (Ed.), Your wish is my command: Giving users the power to instruct their
software. Morgan Kauffman , pp. 245-270.

7. Blackwell, A. and Collins, N. (2005). The programming language as a musical instrument. In
Proceedings of PPIG 2005, pp. 120-130.

8. Blackwell, A.F. (2006). The reification of metaphor as a design tool. ACM Transactions on
Computer-Human Interaction (TOCHI), 13(4), 490-530.

Gerhard Fischer 1 Dagstuhl EUSE Seminar

Position Paper for the Dagstuhl Seminar “End-User Software Engineering”, February 2007

Meta-Design: A Conceptual Framework for End-User Software Engineering
Gerhard Fischer

University of Colorado, Center for LifeLong Learning and Design (L3D)
Department of Computer Science, 430 UCB

Boulder, CO 80309-0430 – USA
gerhard@colorado.edu

1. Summary of own most relevant work for EUSE

Meta-Design
In a world that is not predictable, improvisation, evolution, and innovation are more than a
luxury: they are a necessity. The challenge of design is not a matter of getting rid of the emergent,
but rather of including it and making it an opportunity for more creative and more adequate
solutions to problems.
Meta-design is an emerging conceptual framework aimed at defining and creating social and
technical infrastructures in which new forms of collaborative design can take place. It extends the
traditional notion of system design beyond the original development of a system. It is grounded
in the basic assumption that future uses and problems cannot be completely anticipated at design
time, when a system is developed. Users, at use time, will discover mismatches between their
needs and the support that an existing system can provide for them. These mismatches will lead
to breakdowns that serve as potential sources of new insights, new knowledge, and new
understanding.

Consumers and Designers
Cultures are substantially defined by their media and their tools for thinking, working, learning,
and collaborating. A great amount of new media is designed to see humans only as consumers.
The importance of meta-design rests on the fundamental belief that humans (not all of them, not
at all times, not in all contexts) want to be and act as designers in personally meaningful
activities. Meta-design encourages users to be actively engaged in generating creative extensions
to the artifacts given to them and has the potential to break down the strict counterproductive
barriers between consumers and designers.
Many computer users and designers today are domain professionals, competent practitioners,
and discretionary users, and should not be considered as naïve users or “dummies.” They worry
about tasks, they are motivated to contribute and to create good products, they care about
personal growth, and they want to have convivial tools that make them independent of “high-tech
scribes” (whose role is defined by the fact that the world of computing is still too much separated
into a population of elite scribes who can act as designers and a much larger population of
intellectually disenfranchised computer phobes who are forced into consumer roles). The
experience of having participated in the framing and solving of a problem or in the creation of an
artifact makes a difference to those who are affected by the solution and therefore consider it
personally meaningful and important.
A fundamental challenge for the next generation of computational media and new technologies is
not to deliver predigested information to individuals, but to provide the opportunity and
resources for social debate, discussion, and collaborative design. In many design activities,
learning cannot be restricted to finding knowledge that is “out there.” For most design problems
(ranging from urban design to graphics design and software design, which we have studied over
many years), the knowledge to understand, frame, and solve problems does not exist; rather, it is
constructed and evolved during the process of solving these problems, exploiting the power of
“breakdowns”. From this perspective, access to existing information and knowledge (often seen as
the major advance of new media) is a very limiting concept.

Dagstuhl Seminar Proceedings 07081
End-User Software Engineering
http://drops.dagstuhl.de/opus/volltexte/2007/1087

Gerhard Fischer 2 Dagstuhl EUSE Seminar

Unself-conscious and Self-conscious Design Cultures
The theory of unself-conscious and self-conscious design cultures (C. Alexander) provides an initial
analytical framework for gaining a systematic understanding of the fundamental difference
between domain experts and software professionals.
Self-conscious design culture. Dictated by a self-conscious design culture, the major focuses of
software engineering research are understanding, representing correctly, and satisfying what the
users want; creating software systems that have high production values; and providing the
development process that achieves the highest economic efficiency and that is repeatable. The
distinct separation of users and developers is one of the most important tacit assumptions
underlying software engineering research and many research problems framed under this
assumption.
Unself-conscious design cultures. Domain experts who engage in software development
activities are not interested in the system per se, but rather in the domain-specific tasks that have
to be performed with the help of the system. For them, because they are not professional software
developers, software systems are tools, and the introduction of new tools changes the tasks and
practices, which in turn begets new needs for tools. This co-evolution of tools and tasks determines
that a large class of software systems can never be completely delegated to external professional
software developers, and can be developed only by those domain experts who own the problem
and have both the inside knowledge of the application domain and software development skills.

2. Future Questions for EUSE

Understanding the Impacts of Meta-Design on Software Development
EUSE research should explore the following hypotheses / claims:

 Hypothesis1: Requirements are generated differently. Because developers are users
themselves, there is no need for an elaborate requirement analysis phase as a major
activity preceding the construction of the software system. Rapid changes of
requirements need not be avoided; quite to the contrary, they are desired because the
computer in such contexts is used to explore the new possibilities and to find the
“undreamed-of requirements”

 Hypothesis2: Software testing is conducted differently. Because domain expert
developers themselves are the primary users, complete testing is not as important as in
the case when the developers are not the users.

 Hypothesis3: Collaboration takes place along different dimensions. In self-conscious
software development, a team of developers is often organized before the project starts
— in unself-conscious software development, a predefined project team does not exist.
Collaboration is spontaneous and opportunistic rather than planned.

 Hypothesis4: The path to the acquisition of knowledge and skill for software
development is different. Due to the lack of interest in software per se and the lack of
professional training, domain experts are more likely to acquire software knowledge in a
piecemeal fashion and demand-driven manner. Their knowledge is more fragmental
than systematic.

 Hypothesis5: Software will evolve in a different style. The system is evolved gradually
by a large number of people who make small contributions each time. Evolution is more
spontaneous and situational due to the co-adaptivity of tools and their users.

Trade-off between Standardization and Improvisation
Meta-design creates an inherent tension between standardization and improvisation. The SAP
Info (July 2003, page 33) argues to reduce the number of customer modifications for the following
reasons: “every customer modification implies costs because it has to be maintained by the customer. Each
time a support package is imported there is a risk that the customer modification my have to be adjusted or
re-implemented. To reduce the costs of such on-going maintenance of customer-specific changes, one of the
key targets during an upgrade should be to return to the SAP standard wherever this is possible”. Finding
the right balance between standardization (which can suppress innovation and creativity) and
improvisation (which can lead to a Babel of different and incompatible versions) has been noted

Gerhard Fischer 3 Dagstuhl EUSE Seminar

as a challenge in open source environments in which forking has often led developers in different
directions.

From “Ease-of-Use” to “Low Threshold and High Ceiling”
 “Ease-of-use” along with the “burden of learning something” are often used as arguments for
why people will not engage in design. Building systems that support users to act as designers
and not just as consumers is often less successful than the meta-designers have hoped for.
The end-user modifiability and end-user programming features themselves add often
considerably more functionality to already very complex environments (such as high
functionality applications and large software reuse libraries) — and our empirical analyses
clearly show that not too many users of such systems are willing to engage in this additional
learning effort.
Based on our work with user communities, it is obvious that serious working and learning do not
have to be unpleasant — they can be empowering, engaging, and fun. Many times the problem is
not that programming is difficult, but that it is boring (as we were told by an artist). Highly creative
owners of problems struggle and learn tools that are useful to them, rather than believing in the
alternative of “ease-of-use,” which limits them to preprogrammed features.

Motivation and Rewards
What makes people, over time, become active contributors and designers and share their
knowledge requires a new “design culture”, involving a mindset change and principles of social
capital accumulation. But before new social mindsets and expectations emerge, users’ active
participation comes as a function of simple motivational mechanisms and activities considered
personally meaningful.
One focus of meta-design is the design of socio-technical environments in which interactive
systems are embedded, and in which users are recognized and rewarded for their contributions
and can accumulate social capital. Social capital is based on specific benefits that flow from the
trust, reciprocity, information, and cooperation associated with social networks

Additional Topics (only enumerated here)
1. relationship between: end-user development, end-user software engineering, meta-design,

web 2.0 approaches;
2. the relevance of EUSE as a contribution to a "science of design";
3. support for the "seeding/location/comprehension/modification/sharing (sLCMS)" model;
4. putting owners of problems in charge by redefining the roles of high-tech scribes;
5. relationship between EUSE and different design methodologies (e.g., professionally

dominated design, user-centered design, participatory design, learner-centered design);
6. EUSE does not only require reflective practitioners but reflective communities.

3. References Relevant to EUSE
Fischer, G., & Giaccardi, E. (2006) "Meta-Design: A Framework for the Future of End User
Development." In H. Lieberman, F. Paternò, & V. Wulf (Eds.), End User Development —
Empowering people to flexibly employ advanced information and communication technology, Kluwer
Academic Publishers, Dordrecht, The Netherlands, pp. 427-457.
http://l3d.cs.colorado.edu/~gerhard/papers/EUD-meta-design-online.pdf

Fischer, G., Giaccardi, E., Eden, H., Sugimoto, M., & Ye, Y. (2005) "Beyond Binary Choices:
Integrating Individual and Social Creativity," International Journal of Human-Computer Studies
(IJHCS) Special Issue on Computer Support for Creativity (E.A. Edmonds & L. Candy, Eds.),
63(4-5), pp. 482-512.
http://l3d.cs.colorado.edu/~gerhard/papers/ind-social-creativity-05.pdf

Gerhard Fischer 4 Dagstuhl EUSE Seminar

Fischer, G. (2005) "From Reflective Practitioners to Reflective Communities." In: Proceedings of
the HCI International Conference (HCII), Las Vegas, July 2005, (published on CD).
http://l3d.cs.colorado.edu/~gerhard/papers/reflective-communities-hcii-2005.pdf

Fischer, G. (2005) "Computational Literacy and Fluency: Being Independent of High-Tech
Scribes." In J. Engel, R. Vogel, & S. Wessolowski (Eds.), Strukturieren - Modellieren -
Kommunizieren. Leitbild mathematischer und informatischer Aktivitäten, Franzbecker, Hildesheim, pp
217-230;
 http://l3d.cs.colorado.edu/~gerhard/papers/hightechscribes-05.pdf

Ye, Y., & Fischer, G. (2005) "Reuse-Conducive Development Environments," International Journal
Automated Software Engineering, Kluwer Academic Publishers, Dordrecht, Netherlands, 12(2), pp. 199-
235
http://l3d.cs.colorado.edu/~gerhard/papers/J-ASE-final.pdf

Fischer, G. (2002): "Beyond 'Couch Potatoes': From Consumers to Designers and Active
Contributors", in FirstMonday (Peer-Reviewed Journal on the Internet),
http://firstmonday.org/issues/issue7_12/fischer/

Position paper for the End-User Software Engineering Dagstuhl Workshop (Feb. 2007)

Meta-User Interfaces for Ambient Spaces:
Can Model-Driven-Engineering Help?

Joëlle Coutaz
Université Joseph Fourier, Lab.Informatique de Grenoble (LIG)

385 rue de la Bibliothèque, BP 53, 38041 Grenoble Cedex 9, France
joelle.coutaz@imag.fr

PERSONAL WORK RELEVANT TO THE WORKSHOP
My goal is to develop concepts and techniques that allow
users to control and understand the ambient interactive
spaces in which they live. With ambient computing, we are
shifting from the control (and understanding) of systems
and applications confined to a single computer to that of a
dynamic computational aura where the boundaries between
the physical and the digital worlds are progressively
disappearing, where everything is highly dynamic and
adaptive.

As a result, the pre-packaged well-understood solutions
provided by shells and desktops that allow end-users to
control their computing environments are inadequate for a
continuous moving universe. To address this problem, I
propose the concept of meta-UI. In addition, user interfaces
that used to be defined once for ever for a well-identified
context of use, must evolve dynamically. In my research
group, we are addressing this problem under the umbrella
of UI plasticity. Our approach to UI plasticity brings
together MDE (Model Driven Engineering) and SOA
(Service Oriented Architecture) within a unified framework
that covers both the development stage and the runtime
phase of interactive systems.

META-UI
A meta-UI is a special kind of end-user development
environment whose set of functions is necessary and
sufficient to control and evaluate the state of an interactive
ambient space. This set is meta- because it serves as an
umbrella beyond the domain-dependent services that
support human activities in this space. It is UI-oriented
because its role is to allow users to control and evaluate the
state of the ambient interactive space. By analogy, a meta-
UI is to ambient computing what desktops and shells are to
conventional workstations.

As shown in Fig. 1, a meta-UI is characterized by its
functional coverage in terms of services such as object
discovery and coupling, and object types. Objects discovery
allows users (and the system) to be aware of the objects that
can be coupled. By coupling objects, users (and the system)
build new constructs whose components play a set of roles

(or functions). In conventional computing, roles are
generally predefined. In ambient computing, where
serendipity is paramount, assigning roles to objects
becomes crucial. For example, Bob and Jane meeting in a
café use spoons and lumps of sugar to denote the streets
and buildings of the city they are talking about. Bob
couples a spoon with the table by laying it down on the
table while uttering “this is Champs-Elysées”. The system
can then discover the presence of the spoon and assign it
the role of interaction resource (phicon). By doing so, Bob
has dynamically defined a mixed-by-contruction object.

Fig. 1. A dimension space for meta-UI’s.

UI re-distribution is another important generic service to be
provided in ambient spaces. It denotes the re-allocation of
UI elements of the interactive space to different interaction
resources. For example, the GUI of a web site may
dynamically switch from a centralized rendering on a PC
screen to a distributed UI between a PDA and a wall-
mounted display. In turn, UI re-distribution may require UI
re-moulding, that is the capacity of the UI to reconfigure
itself or to be reconfigured (under end-user’s control) by
suppressing, adding, and/or re-organizing UI elements.

Dagstuhl Seminar Proceedings 07081
End-User Software Engineering
http://drops.dagstuhl.de/opus/volltexte/2007/1082

Services and objects are invoked and referenced by the way
of an interaction technique (i.e. a UI) that provides users
with some level of control (observability only, traceability
over time, and controllability or programmability). An
interaction technique is a language (possibly extensible)
characterized by the representation (vocabulary) used to
denote objects and functions as well as by the way users
construct sentences and assemble them into programs
(including how they select/designate objects and functions).

Given the role of a meta-UI, the elements of the interaction
technique of the meta-UI cohabit with the UI’s of the
domain-dependent services that it governs. The integration
level expresses this relationship: all or parts of the UI
elements of the meta-UI are embedded with (or weaved
into) the UI components of the domain-dependent services.
For example, Collapse-to-zoom uses the weaving approach.
Alternatively, UI elements of the meta-UI services may be
external, i.e. not mixed with the UI components of the
domain-dependent services.

MDE and SOA
MDE aims at integrating different technological spaces
using models, models transformations and mappings as key
mechanisms. SOA defines the appropriate meta-model for a
particular class of models: the runtime components. The
flexibility offered by SOA fits our requirements for
dynamic UI re-distribution and UI re-molding.

Fig. 2 An interactive system is a graph of models related by
mappings and transformations.

As shown in Fig. 2, an interactive system is a graph of
models that expresses and maintains multiple perspectives
on the system. As opposed to previous work, an interactive
system is not limited to a set of linked pieces of code.
Models developed at design-time, which convey high-level
design decision, are still available at runtime. A UI may
include a task model, a concept model, an Abstract UI
model (expressed in terms of workspaces), and a Concrete
UI model (expressed in terms of interactors) all of them
linked by mappings. Tasks and Concepts are mapped to
entities of the Functional Core of the interactive system,

whereas the Concrete UI interactors are mapped to I/O
devices (interaction resources) of the platform. Mappings
between interactors and I/O devices support the explicit
expression of centralized versus distributed UIs.

Transformations and Mappings are models as well
expressed in ATL (QVT could be an option as well). In the
conventional model-driven approach to UI generation,
transformation rules are diluted within the tool. Model
transformers are encapsulated as services within a
middleware infrastructure that includes services to support
context awareness, UI re-moulding and UI re-distribution:
The situation synthesizer computes the current situation
from the information provided by observers. An evolution
engine elaborates a reaction in response to the new
situation. For example, “if a new PDA arrives, move the
control panel to the PDA”. The evolution engine identifies
the components of the UI that must be replaced and/or
suppressed and provides the configurator with a plan of
actions. The Configurator executes the plan. If new
components are needed, these are retrieved from the
storage space by the component manager. Components of
the storage space are described with conceptual graphs and
retrieved with requests expressed with conceptual graphs.
By exploiting component reflexivity, the configurator stops
the execution of the “defectuous” components specified in
the plan, gets their state, then suppresses or replaces them
with the retrieved components and launches these
components based on the saved state of the previous
components. The components referred to in the action plan
do not necessarily exist as executable code. They may
instead be high-level descriptions such as task models. If
so, the configurator relies on models transformers to
produce executable code.

We are currently experimenting the flexibility provided by
the interplay between modeling an interactive system as a
graph of models, the existence of a meta-UI and of UI
transformers encapsulated as OSGi services. In our
example of a Home Control Heating System (HHCS), the
user’s task is to set the temperature of the rooms of the
home. The meta-UI provides the end-user with access to the
task and the platform models. For example, the platform
model indicates that a PC HTML and a PC XUL are
currently available in the home. By selecting a task of the
task model then selecting the platform(s) on which the user
would appreciate to perform the selected task, the UI is re-
computed and redistributed on the fly.

ISSUES TO BE DISCUSSED
Programming (and debugging) ambient spaces is yet
another challenge. Embracing this challenge as a whole
may be too complex. Shall we study it based on a
classification of ambient spaces (e.g., domestic, public,
mobile settings, a day of “my” life, etc.). By extension,
what is the problem space of EUSE? How does current
approaches cover the problem space? And then, what is the
solution space?

2

REFERENCES
In addition to the classics (A. Cypher, B. Myers, H.
Lieberman, etc.), I would like to suggest the following ref.
related to ambient spaces as well as to our own work on UI
plasticity and meta-UI.

1. L. Balme, A. Demeure, N. Barralon, J. Coutaz, G.
Calvary. CAMELEON-RT: a Software Architecture
Reference Model for Distributed, Migratable, and
Plastic User Interfaces. In Proc. second European
Symposium on Ambient Intelligence, EUSAI 2004,
LNCS 3295, Markopoulos et al. pp. 291-302

2. G. Calvary, J. Coutaz, D. Thevenin, Q. Limbourg, L.
Bouillon, J. Vanderdonckt. A Unifying Reference
Framework for Multi-Target user interfaces.
Interacting with Computers, Special Issue on

Computer-Aided Design of User Interface, 15(3),
Elsevier Publ., June 2003, pp. 289-308.

3. Coutaz J. Meta-User Interface for Ambient Spaces,
Invited talk. In proceedingd TAMODIA’06, Hasselt,
Belgium, October 2006, Springer LNCS publ., p. 1-15.

4. Dey, A., Hamid, R., Beckmann, C., Li, Y., Hsu, D., a
CAPpella: Programming by Demonstration of Context-
Aware Applications, In Proceedings of the ACM
SIGCHI’04, Vienne, 33-40.

5. Sohn, T.Y., Dey, A.K., iCAP: An Informal Tool for
Interactive Prototyping of Context-Aware
Applications. In Proceedings of the International
Conference on Pervasive Computing 2006. Dublin,
Ireland, May 2006, 974–975.

3

Model-Driven Development for End Users, too!?

Gregor Engels, University of Paderborn
engels@upb.de

Own work

Software Engineering is the discipline which develops and evaluates concepts, languages, methods
and tools for professional software development in order to yield high-quality software systems. During
the last decade, the paradigm of a model-driven development (MDD) has become prominent and is
nowadays the accepted method for industrial software development. The main idea is to work with
intermediary models in order to bridge the semantic gap between high-level, abstract user
requirements and low-level, concrete programs and to support a stepwise refinement process.

This development is supported by agreeing on a standardized unified modelling language (UML). In
order to cope with different application domains, the UML provides also standardized means (termed
stereotypes) to customize the language, ending up with domain-specific (modelling) languages (DSL).

The UML is strong in modelling the internal functionality of a software system, but weak in modelling
user interface aspects of a system. Thus, with respect to the well-known MVC (Model-View-Controller)
pattern, the UML supports the Model aspect, while neglecting the View and Controller aspect.

While the model and functionality aspect is of high interest for a software developer, the view and
model aspects are of particular interest for end users. Thus, any support for end users in customizing
or even changing a software system should first concentrate on means to support the adaption of user
interface aspects.

Within in our research on multimedia software systems, we extended and customized the standard
UML towards a domain-specific modelling language for multimedia systems ([4], [5]). In particular, we
introduced language concepts to define concrete layout aspects as well as complex interactive
behaviour. In [1], we developed sophisticated tool support for end-users in order to customize
multimedia user interfaces.

In a research cooperation with M. Erwig at Oregon State University, we investigated an approach to
introduce an object-oriented model level for the development of spreadsheets [3]. We showed how
such a model level prevents end users from hidden, hard to detect errors within spreadsheet
applications.

Besides facilitating the development due to abstract, domain-related modelling concepts a model-
based development provides the additional advantage of analysing model properties. For instance, in
[2], we developed concepts based on patterns to prove the conformity of models with constraints as
they might be expressed in given (ISO) standards.

Currently, several PhD students are working on the topic of “Model Quality”, in order to develop
concepts and tools to understand, define and check the quality of any developed model.

Dagstuhl Seminar Proceedings 07081
End-User Software Engineering
http://drops.dagstuhl.de/opus/volltexte/2007/1085

Future Research Topics

While the model-driven development paradigm forms a well-accepted approach towards software
development for professional software development, such an approach is in its infancy in end-user
software development. It has to be investigated and evaluated, whether end-users at all are willing to
develop high-level, abstract models instead of directly dealing with low-level programs. In addition, it
has to be investigated what kind of modelling languages are appropriate for end-users. This has to be
accompanied by setting up and evaluating case studies within real scenarios.

Furthermore, it has to be investigated whether and how standard model analysis techniques can be
transferred to end user software development. In particular, appropriate explanation and help systems
have to be designed which translate analysis results into a representation which is understandable by
end users.

References

[1] S. Sauer, G. Engels: Easy Model-Driven Development of Multimedia User Interfaces with
GUIBuilder. In Proc. 4th International Conference on Universal Access in Human-Computer Interaction
(UAHCI 2007), July 2007,Bejing, LNCS, Springer, 2007 (to appear).
.
[2] A. Förster, T. Schattkowsky, G. Engels, R. Van Der Straeten: A Pattern-driven Development
Process for Quality Standard-conforming Business Process Models. In Proc. IEEE Symposium on
Visual Languages and Human-Centric Computing (VL/HCC), Brighton 2006.

[3] G. Engels, M. Erwig: ClassSheets: Automatic Generation of Spreadsheet Applications from Object-
Oriented Specifications . In Proc. 20th IEEE/ACM International Conference on Automated Software
Engineering, Long Beach, California, USA, November 7-11, 2005, pp. 124-133.

[4] G. Engels, S. Sauer: Object-oriented Modeling of Multimedia Applications. In S.K. Chang (ed.),
Handbook of Software Engineering and Knowledge Engineering, vol. 2, pp. 21-53, World Scientific,
Singapore, 2002.

[5] S. Sauer, G. Engels: UML-based Behavior Specification of Interactive Multimedia Applications.
In Proc. IEEE Symposia on Human-Centric Computing Languages and Environments (HCC'01),
September 2001, Stresa, Italy, pp. 248-255. IEEE Computer Society Press.

Position Paper for Dagstuhl 2007 EUSE Workshop

Mary Beth Rosson
Computer-Supported Collaboration and Learning Lab

Center for Human-Computer Interaction
The Pennsylvania State University

mrosson@psu.edu

In this brief position paper, I summarize four
strands of work underway in our Informal
Learning in Software Development research
group at Pennsylvania State University. The
work contributes to end user software
engineering by considering the needs and
characteristics of end user web developers.

1 - Analysis of end users’ needs with
respect to web development

We have conducted survey and interview
studies of nonprogrammers who have some
experience with web development to assess
current practices, problems, needs, and
attitudes. Our results indicate that the
informal web development population is
quite diverse, with participants ranging in
age from under 20 to over 55. In fact in an
opportunity sample web survey, the largest
age segment represented was over 55.

Self-reported web development expertise is
correspondingly diverse, ranging from self-
taught expert programmers to users who rely
entirely on high-level application builders.
However even the least experienced users
report a need for relatively sophisticated
web technologies, for example database

interaction and user authentication. Attitudes
and practices related to software engineering
(e.g., attention to design and testing) are
correlated with self-reported expertise, but
vary in complex ways with other personal
characteristics like curiosity and carefulness.

2 - Analysis of personal variables related to
end users’ development of web applications

Again by combining across survey results
and lab studies, we are starting to see some
patterns in personal variables associated
with web development expertise and

practices. Of particular interest has been
gender as a factor. Quantitative analyses
have been difficult because person variables
tend to be highly inter-correlated and
opportunity samples tend to have fewer
women than men. However, using multiple
regression techniques, we have found that
gender is associated with some measures of
web development expertise; other factors
associated with expertise include the context
in which the development is done, age, and
the “carefulness” of a person’s general
working style. In a lab study, we also saw a
small role of gender in predicting success
with an experimental tool for end user web
development, but cognitive abilities like
visualization and logical reasoning were
more influential as factors.

3 - Analysis of critical obstacles to end
users’ development of web applications

These findings also resulted from a
combination of web surveys and interviews.
In interviews with community webmasters,
we found that many obstacles to providing
working applications were socio-
organizational in nature, for example the
requirement to use a tool mandated by an
organization but that causes problems for the
developer. In general across both the
interviews and surveys, we found that one of
the most common problems in end users’
web development activities was collecting,
merging, and formatting content from other
colleagues. At a technical level, some of the
most irritating and frequent problems were
also those that are most basic and amenable
to tools – making sure that all the links are
always working and getting layouts and
format to look right and to work correctly on
different browsers.

Dagstuhl Seminar Proceedings 07081
End-User Software Engineering
http://drops.dagstuhl.de/opus/volltexte/2007/1094

4 - Development and evaluation of a tool
for end user web development

We have found that a significant proportion
of end users’ concepts for web applications
can be satisfied with a tool that supports
simple data-oriented applications (e.g.,
member directories, personal information or
inventory management). CLICK (Click, a
Lightweight Internet Construction Kit) is a
prototype tool for supporting such
development. It uses an interactive drag-
and-drop user interface, with scaffolding
provided by built-in wizards for common
tasks (e.g., setting up a data table), dialog
boxes that guide behavioral specification
(e.g., prompting with currently available
actions that can be connected to widgets),
and a to-do list that monitors tasks that are
still incomplete (e.g., creating a web page
referenced in another part of the system).
Usability evaluations have confirmed that
sophisticated end users can learn to use
CLICK enough to build a simple application
in about one hour.

Future issues related to EUSE research

A significant issue for EUSE is related to
end users’ motivation to learn and use
software engineering practices or
techniques. People are active users; they do
not want to stop what they are doing so as to
evaluate their progress, make corrections,
and do a ‘better job’. The learning that they
accomplish must come through informal
means, for example goal-oriented help
information, interactions with colleagues, or
intelligent systems with just the right
amount of initiative. As researchers we need
to bear this in mind as we invent new
techniques and methods: if we build it, will
they come?

A related issue concerns the use of
intelligent systems techniques. Intelligent
systems can address users’ minimal
motivation by monitoring or correcting
work. However, these systems are difficult
to build with just the right amount of
initiative—knowing when to jump in and
with what level of assistance is critical, as
too much help may be annoying or

patronizing (as well as wrong) and may also
decrease what the user is able to learn on his
or her own.

One approach to helping users raise the
quality of their problem analyses, designs
and coding techniques is to support
collaboration within a community of end
users (e.g., within programming domains
like web development). Although any
individual user may not be willing to take
the time to discover a solution or a useful
tool, a community may be able to provide
this support. However we still know very
little about how end users may or may not
wish to collaborate in their development
activities, and more generally about how to
build effective online community systems.

There is enormous diversity among end
users who build software, particularly web
software. As we build tools and training for
EUSE, we must be careful to analyze the
differential needs of varying user groups and
create systems and tools that support a broad
range of learning styles, motivation, and
work contexts. An important societal
concern lurking behind this programmatic
suggestion is the digital divide—as end user
development tools become more useful and
available, the gaps and consequences of
varying levels of computer literacy may
become even more pronounced, with the
consequence that some population segments
become even more marginalized.

References of interest
Rode, J., Rosson, M.B., & Pérez-Quiñones, M.A.

2004. End-users’ mental models of web
engineering concepts. Proceedings of Visual
Languages and Human-Centric Computing 2004
(pp. 215-222). New York: IEEE.

Rode, J., Rosson, M.B., & Pérez-Quiñones, M.A.
2006. End user development of web applications.
In Lieberman, H., Paterno, F., & Wulf, V. (Eds.),
End-User Development. Kluwer/Springer.

Rosson, M.B., Ballin, J., & Nash, H. 2004. Everyday
programming: Challenges and opportunities for
informal web development. Proceedings of Visual
Languages and Human-Centric Computing 2004
(pp. 123-130). New York: IEEE.

Rosson, M.B., Ballin, J., & Rode, J. 2005. Who, what
and why? A survey of informal and professional

2

web developers. Proceedings of Visual Languages
and Human-Centric Computing 2005 (pp. 199-
206). New York: IEEE.

Rosson, M.B., Ballin, J., Rode, J., & Toward, B. 2005.
'Designing for the Web' revisited: A survey of
informal and experienced web developers. In

Proceedings of the International Conference on
Web Engineering (pp. 522-532). Kluwer/Springer.

Rosson, M.B. & Seals, C. 2001. Teachers as
simulation programmers: Minimalist learning and
reuse. Proceedings of CHI 2001 (pp. 237-244).
New York: ACM.

3

Rethinking the Software Life Cycle:
About the Interlace of Different Design and Development Activities

Position Paper for the Dagstuhl Seminar 07081
End User Software Engineering.

Yvonne Dittrich
IT University of Copenhagen

Software Development Group
Rued Langaardsvej 7

DK 2300 Copenhagen, Denmark
+45 7218 5177

ydi@itu.dk

Software engineering research addresses professional ways of
designing, developing and implementing software. So far,
software engineering more or less takes for granted that
software professionals have control over the material
implementation of a piece of software. Though users might use
the software innovatively or even customise it, neither end-
user tailoring (EUT) nor end-user development (EUD) are
treated systematically regarding the impact of deferring part of
the design to the use context on software development
technologies or processes. Especially the development,
adaptation and configuration of software products, software
that is used by more than one user in more than one
organisation – makes visible that different parallel ongoing
development activities often distributed over more than two
organisations have to be coordinated. To illustrate and
develop related issues, let me first present three different
projects I was and am involved in:

PD in the Wild
As part of a project focusing on ‘shop floor IT management’1,
we addressed the interlacing of the user side integration and
adaptation of software and flexible software processes as part
of developing an adequate infrastructure for one-stop service
provision. [1] The possibility to tailor system interfaces to
allow for exchanging data between different programs and the
adjustment the program a developing practice were central for
the ongoing design-in-use.

The most appreciated software provider was a small company
developing and maintaining a booking system mainly meant
for sports facilities. Besides being configured to the specific
facilities a municipality provided, the program contained a
module which could be tailored to generate ASCII files
transferring data e.g. for different economy systems or number-
code based access control. The company implemented an agile
development process in order to react quickly on bug reports
and change proposals. For example the need for an extra field
in the customer data to add a mobile number alongside with
the landline could be implemented without delay. [2]

1 DitA Design of IT in Use – supportive technologies for

public service provision, funded by VINNOVA 2000–2002
at Blekinge Institute of Technology.

Designing for Change
The second project addresses the design and development of
tailorable systems for changing business practices at a
telecommunication provider.2 The main results with respect to
this article are that the design of flexible and tailorable
systems does not only depend on the requirements from the
use context but also the technical environment and the
organisation of software development respectively the
interaction of these domains. [3] Functional requirements for a
tailoring interface might be traded against requirements for
maintainability depending on whether the software i s
developed in-house and small maintenance tasks therefore are
less problematic.

Tailoring and end-user development that expands beyond
adaptation of applications to individual preferences and - like
in this case - affects the model of the common work object
implemented by the software requires additional features for
designing, testing and debugging have to be provided for the
end-user. [4] But even if that can be done, when the limits of
the variability provided for the users is reached, software
engineers have to take over in order to evolve the program. [5]
And here again the connection between use and development
plays an important role.

Design of Evolvable Software Productions3

The software that provides the cases for this recently started
project are ERP systems and simulation software for
hydrodynamic system. [6]

Before the software can be applied in a specific organisation or
to simulate a specific river system, the software has to be
configured, partly by providing data – about the organisation
respectively the river system – and partly by configuring the
software. In many cases even adaptation to individual
preferences is possible. Most of the existing ERP systems can

2 The research described here was first funded as a single

project Design in Use of Database Applications (2000 –
2002). The cooperation then continued as part of BESQ –
Blekinge Engineering Software Qualities, a profile project
(2002-2008) funded by the same agency: The Knowledge
Foundation (KKS) at Blekinge Institute of Technology.

3 ESP – Designing Evolvable Software Products, funded the
Danish government through NABIIT, a research council for
nano-, bio- and information technologies from 2006-2008.

Dagstuhl Seminar Proceedings 07081
End-User Software Engineering
http://drops.dagstuhl.de/opus/volltexte/2007/1084

also be adapted through a programming interface. Adaptation
are often done by independent software houses but can also be
implemented by super-user in the end-user organisation.

The different activities of configuration, tailoring and
adaptation often implemented using different technical
solutions are all contributing to finalising design of the
software. And – as could be expected – evolution takes place
on all different levels, posing a number of technical and social
coordination problems.

Based on the experience from the above-described projects a
number of aspects of end-user development become visible as
topics for research:

Software Engineering for EU developers
End-user tailoring and development is not only about
adjusting personal performance support to individual
preferences, but often needed to adjust the existing software to
developing work and business processes. This requires to
design, implement and test changes in coordination with other
users or even with a whole organisation. There is some research
on the organisational end-user development, but regarding
tools and methods for user-developers more research i s
needed.

Cooperating across different development sites
There is neither the user nor the developer. Different members
of the use organisation take on different responsibilities
regarding the continuing development and adaptation of the
software infrastructure. And on the software provider side,
development of the base system, configuration and adaptation
are often distributed between different organisations. How can
the development in the different contexts be organised so that
the parallel development processes in the other contexts can
be taken into account?

This issue becomes visible when addressing the upgrade of
software products. In different projects, we have observed
periods of a few weeks, three to four times peer year, once a
year and several years. What different ways to organise
software development correspond to these different upgrade
periods. What does that imply for the tailoring and EUD
practices of the different products? How can experiences of
tailors and EU developers inform the evolution of the base
product?

Technical coordination of layered of development
Evolution takes place in parallel on the different layers of a
software product. For the different layers, different
technologies are used: part of the configuration might result
in selection between precompiled alternatives. Other
configuration might be saved as meta-data to be interpreted at
run-time. The application itself can be changed through a
programming language interface. The challenges of this
situation become visible when the basic software is updated:
base-data, production data, and configuration can be

transformed semi-automatically but might have to be
complemented depending on new functionality; adaptations
often have to be reworked from scratch or perhaps can now be
replaced through tailoring. Every software product provides
examples of how to combine different technologies to provide
different layers of adaptation and end-user development.

Product line architecture and variability management
addresses some of the design issues but mainly in contexts
where the deferred design is resolved within the development
organisation. There is no systematic categorisation of different
possibilities and their combination for multi-layered and end-
user development.

Representations of Variability
How to represent complex configuration and adaptation
possibilities respectively their constraints so that consultants
and end-users can develop a qualified co-design of business
organisation and software?

ACKNOWLEDGEMENTS
Thanks to my colleagues Sara Eriksén, Jeanette Eriksson,
Christina Hansson and Olle Lindeberg from Blekinge Institute
of Technology and Hataichanok Unphon, Peter Sestoft and
Sebastien Vaucouleur from the IT University of Copenhagen
who have been or are participating in the research projects, this
position paper is based on.

REFERENCES
[1] Y. Dittrich, S. Eriksén, C. Hansson PD in the Wild:

Evolving Practices of Design in Use. In: T. Binder, J.
Gregory, I. Wagner Proceedings of the PDC 2002, Malmö,
Sweden.

[2] C. Hansson, Y. Dittrich, D. Randall How to Include Users
in the Development of Off-the-Shelf Software: A Case for
Complementing Participatory Design with Agile
Development. In: Proceedings of the HICSS 2006.

[3] Y. Dittrich, O. Lindeberg Designing for Changing Work
and Business Practices. To be published in: N. Patel (ed.)
Evolutionary and Adaptive Information Systems, Idea
Group Publishing: 2002.

[4] J. Eriksson, Y. Dittrich Combining Tailoring and
Evolutionary Software Development for Rapidly
Changing Business Systems. Accepted for the Journal of
Organizational and End-User Computing.

[5] Y. Dittrich, O. Lindeberg, L. Lundberg End- User
Development as Adaptive Maintenance. Two Industrial
Cases. In: V. Wulf, H. Lieberman, F. Paternó (eds.) End
User Development: Empowering people to flexibly employ
advanced information and communication technology,
Springer 2006.

[6] ESP web address

Software environments for supporting End-User Development

Maria Francesca Costabile, Antonio Piccinno
Dipartimento di Informatica, Università degli Studi di Bari, via Orabona, 4,

Bari, 70125, Italy
costabile@di.uniba.it, piccinno@di.uniba.it

In the Information Society, end users keep increasing very fast in number, as well as in their
demand with respect to the activities they would like to perform with computer environments,
without being obliged to become computer specialists. There is a great request to provide end users
with powerful and flexible environments, tailorable to the culture, skills and needs of a very diverse
end user population. Moreover, the evolution in the culture of computing and the evolution of the
roles of designers, programmers, and end users in the life cycle of software products lead to a new
perspective in the development of software systems. Current work organizations require end users to
tailor their software environments for better adapting them to their needs, and even to create or
modify software artefacts. These are defined activities of End-User Development (EUD), to which a
lot of attention is currently devoted by various researchers in Europe and all over in the world.

Our work in EUD has been carried out in the last few years together with Piero Mussio, of the
University of Milan, also participating in EUD-Net (thematic network on EUD, funded by the UE).
The work has provided various contributions to EUD, as summarized in the following.

We highlighted the needs of a community of users that is the most specific target audience for
EUD, namely professionals in diverse areas outside of computer science, such as engineers,
physicians, geologists and physicist, who are not professional programmers. This is described in
papers that report experiences we collected by developing interactive systems used by such
professional people, also called domain experts [1][2][3][4]. We identified two classes types of end
user activities, as reported in [2][5], also mentioned by H. Lieberman, F. Paternò, M. Klann and V.
Wulf in the first chapter of the Springer book “End-User Development”.

We developed a participatory design methodology, called SSW (Software Shaping Workshop)
methodology, aimed at designing software environments that support end users to become
co-designers of their tools. The SSW methodology emerges from the experiences gained in different
application domains, and stresses the need for collaboration of different stakeholders, namely
software engineers, HCI experts and domain experts.

The importance of considering user diversity is also considered. End users are very diverse
because of their culture, education, skill, age, and training. In many domains, there are different
communities of end users that need to collaborate to reach a common goal. Members of each
community should need an appropriate software environment, suitable to them to manage their own
view of the activity to be performed. This environment is called Software Shaping Workshop (SSW),
since it is developed by exploiting the metaphor of the artisan workshop, where an artisan finds all
and only the tools necessary to carry out her/his activities and properly shapes various materials
(wood, iron, etc.) into usable products. In analogy, people should find in the SSWs all and only the
tools to shape software artefacts. Such tools must be perceived and must behave so as to be usable in
the current situation. To this aim, in the SSW methodology, representative of end users are required to
participate in the design and implementation process as co-authors. Such representatives are involved
in the design of the final workshops to be used by all the end users belonging to the specific
sub-community to which they belong too. In this manner users have a twofold rule: users and
designers of their own software environment.

This methodology, first presented in [1], has been refined in the following years [2][3][4][7]. It is
a participatory, meta-design approach [Fischer G., Giaccardi E., Ye Y., Sutcliffe A. G., Mehandjiev
N., Meta-design: a manifesto for end-user development, Communications of the ACM, Vol. 47(9),
Sept. 2004, 33-37.] in which the different stakeholders can contribute their own views on the problem
Dagstuhl Seminar Proceedings 07081
End-User Software Engineering
http://drops.dagstuhl.de/opus/volltexte/2007/1081

to design, development and maintenance of an application, using their own languages and notations.
Many types of hurdles are studied, which induce users to make errors and mistakes, and to break

the continuity of their reasoning while carrying out a working task with the computer. As a
consequence, negative emotional states, such as frustration, dissatisfaction, anxiety, may arise. The
Software Shaping Workshop (SSW) methodology drives the development of interactive systems that
are correctly perceived and interpreted by end users, thus becoming more acceptable and favouring
positive emotional states [8].

We proposed a model of the Interaction and Co-Evolution processes (ICE model) occurring
between users and system [6]. It extends the previous model of Human-Computer Interaction by
considering an important phenomenon occurring during the use of interactive systems, called
co-evolution of users and systems and based on the following two observations: 1) once people gain
proficiency in system usage, they would like to use the system in different ways and need different
interfaces than those they required when they were novice users (user evolution); 2) designers are
then forced to evolve the system to meet the new users’ needs (system evolution). The ICE model
leads to re-examine the way interactive system are designed and forces a perspective of meta-design.

We consider a primary challenge for EUSE the creation of methodologies and tools which permit
the creation of systems localized to end user culture and situation, so that end users may access
knowledge sources, comprehend their content and perform their tasks without hurdles deriving from
different cultures and traditions. These novel systems should also allow end users to tailor them at use
time according to their needs and preferences. We believe that a meta-design approach must be
stressed, which distinguishes two-phases: the first phase being designing the design environment that
will be used by various experts (stakeholders) in the design team in order to design the specific
applications; the second one being designing the applications using that design environment. The
different stakeholders should be enabled to collaborate, also respecting their different viewpoints,
both at design and use time.

In our view, meta-design is a process in which humans are able to act as designers of the system
they use and to contribute to the co-evolution of such system. Meta-design must support humans in
shaping their socio-technical environments and in adapting their tools to their needs.

[1] Costabile, M.F., Fogli, D., Fresta, G., Mussio, P., Piccinno, A., “Computer Environments for
Improving End-User Accessibility”, Proc. of 7th ERCIM Workshop "User Interfaces For All",
Paris, October 23-25, 2002, pp. 187-198.

[2] Costabile, M. F., Fogli, D., Fresta, G, Mussio, P., Piccinno, A., Building Environments for
End-User Development and Tailoring, Proc. 2003 IEEE HCC’ 03, Auckland, New Zealand,
October 2003, pp. 31-38.

[3] Costabile, M. F., Fogli, D., Mussio, P., Piccinno, A., “End-User Development: the Software
Shaping Workshop Approach”. In (Lieberman, H.; Paternò, F.; Wulf, V. Eds.): End user
development. Springer, Dordrecht, The Netherlands, 2006, pp. 183-205.

[4] Costabile, M. F., Fogli, D., Lanzilotti, R., Fresta, G, Mussio, P., Piccinno, A., “End-User
Development Supporting Work Practice”, Journal of Organizational and End User Computing,
Volume 18, Number 4, 2006, pp. 43-65.

[5] Costabile, M.F., Fogli, D., Letondal, C., Mussio, P., Piccinno, A., “Domain-Expert Users and
their Needs of Software Development”, Special Session on EUD, UAHCI Conference, Crete,
June 2003, pp. 532-536.

[6] Costabile, M.F., Fogli, D., Marcante, A., Piccinno, A., Supporting Interaction and Co-evolution
of Users and Systems. Proc. AVI 2006, ACM Press, pp. 143-150.

[7] Costabile, M. F., Fogli, D., Mussio, P., Piccinno, A., “Visual Interactive Systems for End-User
Development: a Model-based Design Methodology”, IEEE Transactions on Systems, Man, and
Cybernetics, Part A, to appear.

[8] Fogli, D., Piccinno, A., “Environments to support context and emotion aware visual
interaction”, Journal of Visual Languages and Computing. Volume 16, pp. 386–405, 2005.

WHAT IS AN END-

USER SOFTWARE

ENGINEER?

STEVEN CLARKE, MICROSOFT

CORPORATION

INTRODUCTION

I work in a multi-disciplinary team at Microsoft that

is responsible for designing and building the user

experience for users using the Visual Studio .Net

suite of products. Visual Studio .Net is a large

product suite, comprising a variety of software tools

such as code profilers, debuggers, bug tracking tools,

testing tools, code editors and language compilers.

Multiple programming languages are supported,

such as Visual Basic .Net, C# and C++.

Given the large variety of tools and languages that

are supported by Visual Studio .Net, we are

responsible for designing user experiences for a

large variety of different users working in a large

variety of different scenarios. For example, on one

project we might be designing the user experience

for building small web based applications while on

another project we might be designing the user

experience for a team of developers building a large

distributed enterprise application. In both scenarios,

the users that participate in the scenarios might

differ in their work styles and characteristics just as

much as the scenarios differ from each other.

To address the challenge of developing a shared

understanding of the users that participate in each

scenario we have developed a set of personas that

describe the work styles, characteristics and

motivations that are common to particular groups of

people using our products. The personas help us

communicate these characteristics by humanizing

them, increasing the empathy that team members

have for these fictional users.

There are a couple of things that are of particular

interest about these personas that I would like to

expand upon:

 We need more than one persona to

adequately describe the different work

styles, motivations and characteristics that

we have observed of people using our

products.

 We do not differentiate personas on

expertise, experience or educational

background.

MULTIPLE PERSONAS

We developed the personas by observing people

using our products and noting the work styles,

characteristics and motivations of each person. Over

a period of approximately 12 months we observed

people working in our usability labs and in their own

workplaces, working in multiple scenarios. After this

time, we were able to identify work styles,

characteristics and motivations that were common

across many of the observations that we had made.

These formed the basis for the three personas that

we defined.

We developed three different personas which

describe the three sets of work styles, characteristics

and motivations that we had observed. These

personas are briefly described below:

THE SYSTEMATIC DEVELOPER

 Writes code defensively. Does everything

they can to protect their code from

unstable and untrustworthy processes

running in parallel with their code.

 Develops a deep understanding of a

technology before using it.

 Prides themselves on building elegant

solutions.

Dagstuhl Seminar Proceedings 07081
End-User Software Engineering
http://drops.dagstuhl.de/opus/volltexte/2007/1080

THE PRAGMATIC DEVELOPER

 Writes code methodically.

 Develops a sufficient understanding of a

technology to enable them to use it.

 Prides themselves on building robust

applications.

THE OPPORTUNISTIC DEVELOPER

 Writes code in an exploratory fashion.

 Develops a sufficient understanding of a

technology to understand how it can solve a

business problem.

 Prides themselves on solving business

problems.

We have been using these personas for four or five

years now and have found them to be an invaluable

resource in developing a shared understanding of

who the user is when designing user experiences.

DIFFERENTIATE ON WORK STYLES, NOT

EXPERTISE

One of the big challenges we’ve faced in spreading

the word about these personas throughout

Microsoft (and amongst our own customers) is

correcting the assumption that the three personas

describe developers with different levels of skill and

educational backgrounds. We chose to represent

work styles, motivations and characteristics as these

are less liable to change over time as opposed to

levels of expertise, educational background etc. Our

observations have shown us that the work styles we

described in the personas are shared by people with

varying levels of expertise and educational

background. It is not the case that someone starts

out as an opportunistic developer then becomes a

pragmatic developer after gaining a certain level of

experience and expertise.

TRANSFER OF LEARNING

When developing and describing the personas we

did not make a distinction between the job roles or

titles of the people that we observed. Instead, we

simply made observations of people who said that

they used our products or other tools to develop

software while at work. Many of these people did

not describe themselves as software engineers. The

variety of job titles that people used included

‘Rocket Scientist’, ‘Surveyor’, ‘Customer support’ as

well as ‘Software engineer’, ‘Software developer’

etc. In addition we did not observe any relationship

between job titles and work styles.

Given this, it is possible that one or more of the

personas we developed would apply equally as well

in discussions of end user software engineers.

Identifying the commonalities between end user

software engineers and so called professional

software engineers would help enormously in

identifying opportunities for transfer of learning

between research focused on either community.

For example, Beckwith et al (2005) describe an

investigation into the effect of gender on the

effectiveness of end user debugging features and

report that females were less willing to use new

debugging features than males. In addition, females

spent their time editing spreadsheet formulas as

opposed to learning how to use the new debugging

features. These results are similar to observations

we make of opportunistic developers who focus on

solving the business problem rather than learning

how a particular feature works. The challenges are

the same for both groups – how to encourage the

use of tools that will help solve the business

problem.

REFERENCES

Beckwith, L., Burnett, M., Wiedenbeck, S., Cook, C.,

Sorte, S., and Hastings, M.: Effectiveness of end-user

debugging software features: are there gender

issues? ACM Conference on Human Factors in

Computing Systems, April 2005

	01.pdf
	07081 Abstracts Collection End-User Software Engineering --- Dagstuhl Seminar ---
	 Margaret M. Burnett, Gregor Engels, Brad A. Myers and Gregg Rothermel

	02.pdf
	03.pdf
	04.pdf
	05.pdf
	06.pdf
	07.pdf
	08.pdf
	09.pdf
	10.pdf
	End-user (further) development: �A case for negotiated semio
	Semiotic engineering
	Designing at interaction time
	SERG’s related research publications

	11.pdf
	12.pdf
	13.pdf
	14.pdf
	15.pdf
	16.pdf
	17.pdf
	18.pdf
	19.pdf
	Interdisciplinary Design Research for End-User Software Engineering
	Alan Blackwell
	Dagstuhl seminar on End User Software Engineering, February 2007
	References and Further Reading

	20.pdf
	21.pdf
	22.pdf
	23.pdf
	24.pdf
	25.pdf
	26.pdf

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

